df.loc["Row_Total"] = df.sum() df.loc[:,"Column_Total"] = df.sum(axis=1) 2、如果有文字 import pandas as pd data = [('a',1,2,3),('b',4,5,6),('c',7,8,9),('d',10,11,12)] df = pd.DataFrame(data,columns=('col1', 'col2', 'col3','col4')) df.loc['Col...
pl.sum('value2').alias('sum_value2') ]) group_time_pl = time.time() - start # 打印结果...
In [53]: A, rows, columns = ss.sparse.to_coo( ...: row_levels=["A", "B", "C"], column_levels=["D"], sort_labels=False ...: ) ...: In [54]: A Out[54]: <3x2 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> In [55]...
(f, axis="columns") File ~/work/pandas/pandas/pandas/core/frame.py:10374, in DataFrame.apply(self, func, axis, raw, result_type, args, by_row, engine, engine_kwargs, **kwargs) 10360 from pandas.core.apply import frame_apply 10362 op = frame_apply( 10363 self, 10364 func=func, ...
df=pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])#print(df,'\n')forrow_index,rowindf.iterrows():print(row_index,row)""" 输出:0col1-0.087832col2-1.324081col31.313132Name:0,dtype:float641col10.329817col20.342322col31.289371Name:1,dtype...
['total'] =df.select_dtypes(include=['int']).sum(1)df['total'] =df.loc[:,'Q1':'Q4'].apply(lambda x: sum(x), axis='columns')df.loc[:, 'Q10'] = '我是新来的' # 也可以# 增加一列并赋值,不满足条件的为NaNdf.loc[df.num >= 60, '成绩...
newdata = pd.DataFrame(data, columns=['c1', 'c2']) print(newdata) 1. 2. 3. 4. 5. 6. 7. c1 c2 0 a 1 1 b 2 2 c 3 3 d 4 1. 2. 3. 4. 5. 1.3 中括号索引 data = pd.DataFrame({'c1': c1, 'c2': c2, 'c3': c3}) ...
rename(columns={}) 查看数据常用属性及方法: index 获取索引 T 转置 columns 获取列索引 values 获取值数组 describe() 获取快速统计 DataFrame各列name属性:列名 rename(columns={}) DataFrame有行索引和列索引。 DataFrame同样可以通过标签和位置两种方法进行索引和切片。
# Check duplicate rowsdf.duplicated()# Check the number of duplicate rowsdf.duplicated().sum()drop_duplates()可以使用这个方法删除重复的行。# Drop duplicate rows (but only keep the first row)df = df.drop_duplicates(keep='first') #keep='first' / keep='last' / keep=False# Note: in...
df.loc[:,'Q1':'Q4'].apply(lambda x: sum(x), axis='columns') df.loc[:,'Q10'] ='我是新来的'# 也可以 # 增加一列并赋值,不满足条件的为NaN df.loc[df.num >= 60,'成绩'] ='合格' df.loc[df.num < 60,'成绩'] ='不合格' ...