我们可以使用df.str访问整个字符串列,然后使用.str.replace()方法替换特殊字符。例如: df[‘l3’] = df[‘l3’].str.replace(‘.’,‘’, n=1) 上面的n=1参数意味着我们只替换“.”的第一个匹配项(从字符串开始)。默认情况下,n设置为-1,这将替换所有引用。 不要将.str.replace()与df.replace()混淆。
df.rename(columns={"Q1":"a", "Q2": "b"}) # 对表头进行修改df.rename(index={0: "x", 1:"y", 2: "z"}) # 对索引进行修改df.rename(index=str) # 对类型进行修改df.rename(str.lower, axis='columns') # 传索引类型df.rename({1: 2, 2: 4},...
In [22]: pd.array([1, 0, 0, 2], dtype='Sparse[int]') Out[22]: [1, 0, 0, 2] Fill: 0 IntIndex Indices: array([0, 3], dtype=int32) ```## 稀疏访问器 pandas 提供了一个`.sparse`访问器,类似于字符串数据的`.str`,分类数据的`.cat`和日期时间数据的`.dt`。此命名空间提供了...
字符串向量化,即对于数据类型为字符串格式的一列执行向量化的字符串操作,本质上是调用series.str属性的系列接口,完成相应的字符串操作。尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ...
(Not a Number) #空值 None #缺失值 pd.NaT #时间格式的空值# 判断缺失值 isnull()/isna() #断Series或DataFrame中是否包含空值 notnull() #与isnull()结果互为取反 isin() #判断Series或DataFrame中是否包含某些值 dropna() #删除Series或DataFrame中的空值 fillna() #填充Series或DataFrame中的空值 ffill...
#downcast='unsigned'# sample dataframedf = pd.DataFrame({'A': [1,2,3,4,5],'B': ['a','b','c','d','e'],'C': [1.1,'1.0','1.3',2,5]})# converting all columns to string typedf = df.astype(str)#此时是改变整个数据框的类型print(df.dtypes)...
df.select_dtypes(include=['number']) # 只取数字型 df.select_dtypes(exclude=['int']) # 排除int类型 df.select_dtypes(exclude=['datetime64']) 02、数据类型转换 在开始数据分析前,我们需要为数据分配好合适的类型,这样才能够高效地处理数据。不同的数据类型适用于不同的处理方法。
to_datetime to_numeric to_pickle to_timedelta 4.1 pd.to_datetime 转换为时间类型 转换为日期 转换为时间戳 按照format 转换为日期 pd.to_datetime(date['date'],format="%m%d%Y") 针对日期列混合多种日期类型,可考虑: # 添加日期长度辅助列df['col'] = df['date'].apply(len) ...
drinks.select_dtypes(exclude=['number']).head() 7.字符串转换为数值 df = pd.DataFrame({'列1':['1.1','2.2','3.3'], '列2':['4.4','5.5','6.6'], '列3':['7.7','8.8','-']}) df df.astype({'列1':'float','列2':'float'}).dtypes 用这种方式转换第三列会出错,因为这列里...
读取一般通过read_*函数实现,输出通过to_*函数实现。 3. 选择数据子集 导入数据后,一般要对数据进行清洗,我们会选择部分数据使用,也就是子集。 在pandas中选择数据子集非常简单,通过筛选行和列字段的值实现。 具体实现如下: 4. 数据可视化 不要以为pandas只是个数据处理工具,它还可以帮助你做可视化图表,而且能高度...