排序sort_values,默认是升序asc 操作某个列属性,通过属性的方式df.column 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df.groupby("occupation").age.mean().sort_values(ascending=False) # 默认是升序 # df.groupby(df["occupation"]).age.mean().sort_values(ascending=False) # df.groupby(by="...
# 使用groupby进行分组,并对每个分组的'sales'列进行降序排序sorted_groups = df.groupby('category').apply(lambda x: x.sort_values(by='sales',ascending=False))# 查看排序后的结果sorted_groups 我们使用apply+lambda方法对分组后的数据进行了排序,当然,我们也可以先排序后分组,使用以下代码: sorted_groups1 ...
由于字典结构没有sort_values()函数,因此不能在分组之后进行排序,但是可以首先对DataFrame进行排序,然后再对DataFrame进行分组。 group=df.sort_values('salary').groupby('company') list(group) 参考文档: Pandas教程 | 超好用的Groupby用法详解 pandas.DataFrame.groupby GroupBy...
[1, 2, 3, 4, 5, 6]} df = pd.DataFrame(data) # 按照Group列进行分组,并计算每个组的计数 group_counts = df.groupby('Group').size() # 按照计数降序排序 sorted_counts = group_counts.sort_values(ascending=False) # 将计数结果转换为DataFrame,并添加Group列 result = sorted_counts.reset_...
sort_values(by=['group', 'value'], ascending=[False, False], inplace=True) data = data.groupby('group').nth[0] data 2、求每组的平均值 分组求每组的均值,求和、中位数、方差等操作同理。 import pandas as pd data = pd.DataFrame({'group': ['a', 'a', 'a', 'a', 'b', 'b',...
最简单的排序可以使用sort_values()方法: # 创建示例数据data={'name':['Alice','Bob','Charlie','David'],'age':[25,30,35,28],'salary':[50000,60000,70000,55000]}df=pd.DataFrame(data)# 按年龄升序排序df_sorted=df.sort_values('age')print("Sorted by age (ascending):\n",df_sorted)# ...
...:df= x.sort_values(by ='age',ascending=True) ...: returndf.iloc[-1,:] ...: In [39]: oldest_staff = data.groupby('company',as_index=False).apply(get_oldest_staff) In [40]: oldest_staff Out[40]: company salary age0A23331B21402C4335 ...
如果我们想先按照 group 列的自定义顺序 C, B, A 进行排序,再按照 score 列进行降序排序,可以这样实现:group_order = ['C', 'B', 'A'] def custom_sort_group(x): return group_order.index(x) df_sorted = df.sort_values(by=['group', 'score'], key=lambda x: x.map(custom_sort_group)...
...: df = x.sort_values(by ='age',ascending=True) ...:returndf.iloc[-1,:] ...: In [39]: oldest_staff = data.groupby('company',as_index=False).apply(get_oldest_staff) In [40]: oldest_staff Out[40]: company salary age ...
另外,在标签列已经命名的情况下,sort_values可通过by标签名实现与sort_index相同的效果。 2 分组聚合 pandas的另一个强大的数据分析功能是分组聚合以及数据透视表,前者堪比SQL中的groupby,后者媲美Excel中的数据透视表。 groupby,类比SQL中的group by功能,即按某一列或多列执行分组。一般而言,分组的目的是为了后续的...