columns = df.columns.reorder_levels([' M ', ' L ', ' K '])其中[' M ', ' L ', ' K ']是层的期望顺序。 通常,使用get_level和set_level对标签进行必要的修复就足够了,但如果你想一次对多索引的所有级别应用转换,Pandas有一个(命名不明确)函数rename接受一个dict或一个函数: 至于重命名级别,...
为Pandas提供列的名称总是一个好主意,而不是整数标签(使用columns参数),有时也可以提供行(使用index参数,尽管rows听起来可能更直观)。这张图片会有帮助: 不幸的是,无法在DataFrame构造函数中为索引列设置名称,所以唯一的选择是手动指定,例如,df.index.name = '城市名称' 下一种方法是使用NumPy向量组成的字典或二维...
为Pandas提供列的名称总是一个好主意,而不是整数标签(使用columns参数),有时也可以提供行(使用index参数,尽管rows听起来可能更直观)。这张图片会有帮助: 不幸的是,无法在DataFrame构造函数中为索引列设置名称,所以唯一的选择是手动指定,例如,df.index.name = '城市名称' 下一种方法是使用NumPy向量组成的字典或...
Selecting rows and columns using "get_loc" and "index" methods In the above example, I use theget_locmethod to find the integer position of the column 'volatile_acidity' and assign it to the variablecol_start. Again, I use theget_locmethod to find the integer position of the column th...
除了数据,你还可以选择传递index(行标签)和columns(列标签)参数。如果传递了索引和/或列,你将保证结果 DataFrame 的索引和/或列。因此,一个 Series 字典加上一个特定索引将丢弃所有与传递索引不匹配的数据。 如果没有传递轴标签,它们将根据常识规则从输入数据中构建。
columns, MultiIndex): return self._getitem_multilevel(key) return self._get_item_cache(key) # 切片情况 # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: if isinstance(indexer, np.ndarray): indexer = lib.maybe_indices_to_slice...
变量columns的对象的全限定类名称为pandas.core.indexes.base.Index。 它以包名称开头,后跟模块路径,并以类型名称结尾。 引用对象的常用方法是在包名称后加上对象类型的名称。 在这种情况下,我们将这些列称为 Pandas 的Index对象。 内置的subclass函数检查第一个参数是否从第二个参数继承。Index和RangeIndex对象非常相...
您可以使用index,columns和values属性访问数据帧的三个主要组件。columns属性的输出似乎只是列名称的序列。 从技术上讲,此列名称序列是Index对象。 函数type的输出是对象的完全限定的类名。 变量columns的对象的全限定类名称为pandas.core.indexes.base.Index。 它以包名称开头,后跟模块路径,并以类型名称结尾。 引用对...
Pandas is a special tool that allows us to perform complex manipulations of data effectively and efficiently. Inside pandas, we mostly deal with a dataset in the form of DataFrame. DataFrames are 2-dimensional data structures in pandas. DataFrames consist of rows, columns, and data....
Suppose, we are given a DataFrame with multiple columns and multiple rows. We need to select some rows at a time to draw some useful insights and then we will slice the DataFrame with some other rows. Slicing a Pandas DataFrame by Row ...