使用reset_index 可以将 index 中的两列转化为正常的列 s.reset_index() 可以使用 pivot_table 恢复成一开始的样子,将两列重新作为 index 展示出来 s.reset_index().pivot_table(index=['first','second'],values=0,aggfunc=lambdax:x) 0 同样可以使用最简单的方式进行更改 index 中的名称 s.index.names=...
二,设置索引(set_index) 把现有的列设置为行索引,使用set_index()函数把已有的列转换为行索引,也可以使用set_axis()函数替换掉已有的轴索引。使用现有的列作为DataFrame的索引: DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 参数注释: keys:列标签,或列标签的列...
一、set_index( ) 1、函数体及主要参数解释: DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) 参数解释: keys:列标签或列标签/数组列表,需要设置为索引的列 drop:默认为True,删除用作新索引的列 append:是否将列附加到现有索引,默认为False。 inplace:输入布尔值...
```python df.set_index('A', drop=False, inplace=True) print(df)输出:``cssA B C A0 1 4 7 11 2 5 8 22 3 6 9 3` 代码示例3:将列'A'设置为索引,并将新索引添加到现有索引中(append=True) ```python df.set_index('A', append=True, inplace=True) print(df)输出:css A A B ...
set_index("国家奥委会").head() 输出为: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 数据修改--修改行索引 将第(排名)一列设置为索引 df.set_index("排名").head() 输出为: 数据修改–修改索引名为 金牌排名: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 数据修改--修改索引...
1 set_index可以指定数据中的某一列,将其作为该数据的新索引 2 现在将下图数据中Animal列作为新索引 3 语法:“data.set_index("Animal", inplace=True)”4 其中第一个参数是要作为索引的列名,可以设置多个(以列表形式)“data.set_index(["Animal", "Id"], inplace=True)”5 第二个参数是inplace,...
构建Series和DataFrame时,在pandas中定义的Index类来表示基本索引对象。我们来看两个打印,分别是索引对象所在类名输出,一个是其__doc__属性。 import pandas as pd print(pd.Index) print(pd.Index.__doc__) 输出为: Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis ...
forname,groupingrouped_single:print(name)display(group.head()) e). level参数(用于多级索引)和axis参数 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df.set_index(['Gender','School']).groupby(level=1,axis=0).get_group('S_1').head() ...
在pandas中,Series和DataFrame对象是介绍的最多的,Index对象作为其构成的一部分,相关的介绍内容却比较少。对于Index对象而言,有以下两大类别 Index MultiIndex 二者的区别就在于层级的多少,从字面含义也可以看出,MultiIndex指的是多层索引,Index是单层索引。
简介:pandas中set_index、reset_index区别 1.set_index() 作用:DataFrame可以通过set_index方法,将普通列设置为单索引/复合索引 格式:DataFrame.set_index(key,drop=True,append=False,verify_intergrity=False) import pandas as pddf=pd.DataFrame({'A':['0','1','2','3'],'B':['4','5','6','...