to_numeric主要用于将字符串或其他非数值类型的序列转换为数值类型。相比于astype,它具有更好的容错能力。其基本语法如下: 代码语言:python 代码运行次数:0 运行 AI代码解释 pd.to_numeric(arg,errors='raise',downcast=None) arg: 要转换的对象,可以是列表、元组、Series等。 errors:
s = pd.Series(["1.","2.0",3]) pd.to_numeric(s)01.012.023.0dtype: float64 这里使用float64,因为"2.0"在底层被转换为float而不是int。 我们可以通过传入downcast="float"将其转换为float32,如下所示: s = pd.Series(["1.","2.0",3]) pd.to_numeric(s, downcast="float")01.012.023.0dtype: ...
pandas中有种非常便利的方法to_numeric()可以将其它数据类型转换为数值类型。 pandas.to_numeric(arg, errors='raise', downcast=None) arg:被转换的变量,格式可以是list,tuple,1-d array,Series errors:转换时遇到错误的设置,ignore, raise, coerce,下面例子中具体讲解 downcast:转换类型降级设置,比如整型的有无符...
importpandasaspd# 创建一个包含浮动数据的Seriesdata = pd.Series([1.5,2.5,3.5,4.5])# 使用 pd.to_numeric() 方法将数据转换为整数,并且下行缩减内存numeric_data = pd.to_numeric(data, downcast='integer')# 输出转换后的结果print(numeric_data) 4)用于 DataFrame importpandasaspd# 创建DataFramedf = pd...
pandas.to_numeric()是Pandas中的常规函数之一,用于将参数转换为数字类型。 用法: pandas.to_numeric(arg, errors=’raise’, downcast=None) 参数: arg:列表,元组,一维数组或系列 errors:{'ignore','raise','coerce'},默认为'raise' ->如果为“ raise”,则无效的解析将引发异常 ...
pd.to_numeric(arg,errors='raise',downcast=None) 1. arg: 要转换的对象,可以是列表、元组、Series等。 errors: 错误处理方式,同astype。 downcast: 指定是否尝试缩小数据类型范围,可选值为’integer’或’float’。 (一)优势 自动识别缺失值 to_numeric可以自动将无法解析为数字的值替换为NaN,这使得它非常适合...
import pandas as pd s = pd.Series(['1.0', 'nan', -3.343536]) pd.to_numeric(s, downcast='float',errors = 'ignore') errors为ignore时,nan直接保留 pd.to_numeric(s, downcast='float',errors = 'coerce') errors为coerce时,nan变为NaN pd.to_numeric(s, downcast='integer',errors = 'coerce...
在Number列上调用Series构造函数,然后选择前10行。 # importing pandas moduleimportpandasaspd# making data framedf = pd.read_csv("nba.csv")# get first ten 'numbers'ser = pd.Series(df['Number']).head(10) ser 输出: 使用pd.to_numeric()方法。请注意,通过使用downcast =“ signed”,所有值都将...
1.to_numeric()/to_datetime #pd.to_datetime#pd.to_datetime用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式#例如:df['date_formatted']=pd.to_datetime(df['date'],format='%Y-%m-%d')#是可以通过apply()方法进行多列的操作df[["HepB_1","Hep...
pandas中有种非常便利的方法to_numeric()可以将其它数据类型转换为数值类型。 pandas.to_numeric(arg, errors='raise', downcast=None) arg:被转换的变量,格式可以是list,tuple,1-d array,Series errors:转换时遇到错误的设置,ignore,raise,coerce,下面例子中具体讲解 ...