原文:pandas.pydata.org/docs/user_guide/pyarrow.html pandas 可以利用PyArrow来扩展功能并改善各种 API 的性能。这包括: 与NumPy 相比,拥有更广泛的数据类型 对所有数据类型支持缺失数据(NA) 高性能 IO 读取器集成 便于与基于 Apache Arrow 规范的其他数据框架库(例如 polars、cuDF)进行互操作性 要使用此...
缺失数据 / 使用填充值的操作 在Series 和 DataFrame 中,算术函数有一个 fill_value 选项,即在某个位置的值缺失时要替换的值。例如,当添加两个 DataFrame 对象时,您可能希望将 NaN 视为 0,除非两个 DataFrame 都缺少该值,此时结果将为 NaN(如果需要,您可以稍后使用 fillna 将NaN 替换为其他值)。 代码语言:...
df.fillna(0) # 将空值全修改为0# {'backfill', 'bfill', 'pad', 'ffill',None}, 默认为Nonedf.fillna(method='ffill') # 将空值都修改为其前一个值values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}df.fillna(value=values) # 为各列填充不同的值...
0.592714 1.109898 1.627081 [6 rows x 16 columns] 另一个聚合示例是计算每个组的唯一值数量。这类似于DataFrameGroupBy.value_counts()函数,不同之处在于它只计算唯一值的数量。 In [88]: ll = [['foo', 1], ['foo', 2], ['foo', 2], ['bar', 1], ['bar', 1]] In [89]: df4 = ...
A step-by-step Python code example that shows how to select rows from a Pandas DataFrame based on a column's values. Provided by Data Interview Questions, a mailing list for coding and data interview problems.
# Using the dataframe we created for read_csvfilter1 = df["value"].isin([112])filter2 = df["time"].isin([1949.000000])df [filter1 & filter2] copy() Copy () 函数用于复制 Pandas 对象。当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧...
df.fillna(0) # 将空值全修改为0 # {'backfill', 'bfill', 'pad', 'ffill',None}, 默认为None df.fillna(method='ffill') # 将空值都修改为其前一个值 values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} df.fillna(value=values) # 为各列填充不同的值 df.fillna(value=values, limit...
'missing_values': df.isnull().sum().sum(), 'duplicate_rows': df.duplicated().sum(), 'data_types': df.dtypes.value_counts().to_dict(), 'unique_values': {col: df[col].nunique() for col in df.columns} } return pd.DataFrame(report.items(), columns=['Metric', 'Value']) ...
importpolarsaspl# 我们这里只有一个 sheet# 此时会返回一个字典,key 是 sheet 的名称,value 是对应的 DataFramedf_dict = pl.read_excel("girl.xlsx", sheet_id=[1])print(df_dict.__class__)# <class 'dict'># 每个 sheet 都有一个名称,默认是 "Sheet1", "Sheet2", "Sheet3", ...print(df...
df.fillna(value=values, limit=1) # 只替换第一个 4、修改索引名df.rename(columns={'team':'class'}) 常用方法如下: df.rename(columns={"Q1":"a", "Q2": "b"}) # 对表头进行修改 df.rename(index={0: "x", 1:"y", 2: "z"}) # 对索引进行修改 ...