SELECT column_name(s) FROM table_name WHERE condition GROUP BY column_name(s) HAVING condition ORDER BY column_name(s) SELECT * FROM State_Population WHERE ages = total GROUP BY state/region HAVING AVG(population) > 10000000 ORDER BY population; Theorder byin SQL is used to sort the tabl...
df['column_name'] # 通过标签选择数据 df.loc[row_index, column_name] # 通过位置选择数据 df.iloc[row_index, column_index] # 通过标签或位置选择数据 df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter...
单个df按条件配号 importnumpy as npconditions= [c1,c2,c3,c4,c5,c6] #其中,c1-c6是布尔表达式values= [1,2,3,4,5,6]df[column] = np.select(conditions, values)
通过布尔数组获取值: 代码语言:javascript 代码运行次数:0 运行 复制 In [56]: df1.loc['a'] > 0 Out[56]: A True B False C False D False Name: a, dtype: bool In [57]: df1.loc[:, df1.loc['a'] > 0] Out[57]: A a 0.132003 b 1.130127 c 1.024180 d 0.974466 e 0.545952 f -...
df['r'] = some_expression # add a (virtual) column that will be computed on the fly df.mean(df.x), df.mean(df.r) # calculate statistics on normal and virtual columns 可视化方法也是: df.plot(df.x, df.y, show=True); # make a plot quickly 它的官方提供一个例子,就是纽约市出租车...
read_excel('movie.xlsx') print(df) # 获取index是3 column是'电影名称'的值print(df.at[3, '电影名称']) # 获取index是2 ,第2列的内容 print(df.iat[2, 1]) #代码运行结果:无间道 無間道 2009 在选择或者查询数据的时候,肯定会带又一些条件,这时候我们可以直接选择某一个列,进行条件筛选,得到...
df.Q1.sort_values()df.sort_values('Q4')df.sort_values(by=['team', 'name'],ascending=[True, False]) 其他方法: s.sort_values(ascending=False) # 降序s.sort_values(inplace=True) # 修改生效s.sort_values(na_position='first') # 空值在前# df按指定...
你可以在使用 str 和 len 方法后使用 min max df["A"].str.len().max() df["A"].str.len().min() df["Column Name"].str.len().max() df["Column Name"].str.len().min() 原文由 MSallal 发布,翻译遵循 CC BY-SA 4.0 许可协议 有用 回复 撰写...
可以使用NamedAgg来完成列的命名 iris_gb.agg( sepal_min=pd.NamedAgg(column="sepal length (cm)", aggfunc="min"), sepal_max=pd.NamedAgg(column="sepal length (cm)", aggfunc="max"), petal_mean=pd.NamedAgg(column="petal length (cm)", aggfunc="mean"), petal_std=pd.NamedAgg(column="...
df.groupby('name').apply(lambda x: x.sort_values('score', ascending=False)).reset_index(drop=True) 6.选择特定类型的列 drinks = pd.read_csv('data/drinks.csv') # 选择所有数值型的列 drinks.select_dtypes(include=['number']).head() # 选择所有字符型的列 drinks.select_dtypes(include=['...