# 通过整数索引选择特定的行和列df.iloc[row_indices, column_indices] # 根据条件选择数据框中的行和列df.loc[df['column_name'] > 5, ['column_name1', 'column_name2']]/ 04 / 数据清洗 数据清洗是数据预处理阶段的重要步骤,在此阶段对数据进行转换和修改以确保其准确性、一致性和可靠性。# 检查...
Pandas 数据结构 - DataFrame DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。 DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。 DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个...
pandas 根据条件将行数据转换为列数据-panda [duplicate]说明:1.将s_id设置为索引 1.应用堆栈,使每...
#将DataFrame转换为行格式,以便逐行写入Excel rows = dataframe_to_rows(df) # 将行数据写入Excel工作表 for r_idx, row in enumerate(rows, 1): for c_idx, value in enumerate(row, 1): ws.cell(row=r_idx, column=c_idx, value=value) # 将工作簿保存为Excel文件 wb.save('example.xlsx') 在...
[39]: <1000x5 sparse matrix of type '<class 'numpy.float64'>' with 517 stored elements in Compressed Sparse Row format> In [40]: sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr) In [41]: sdf.head() Out[41]: 0 1 2 3 4 0 0.95638 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 ...
apply()(column-/ row- /table-wise): 接受一个函数,它接受一个 Series 或 DataFrame 并返回一个具有相同形状的 Series、DataFrame 或 numpy 数组,其中每个元素都是一个带有 CSS 属性的字符串-值对。此方法根据axis关键字参数一次传递一个或整个表的 DataFrame 的每一列或行。对于按列使用axis=0、按行使用...
Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] 基础知识 如在上一节介绍数据结构时提到的,使用[](即__getitem__,对于熟悉在 Python 中实现类行为的人)进行索引的主要功能是选择较低维度的切片。以下表格显示了使用[]索引pandas 对象时的返回类型值: 对象类型 选择 返回值类型 Series seri...
pandas.crosstab(index, # 行索引,必须是数组结构数据,或者Series,或者是二者的列表形式 columns, # 列字段;数据要求同上 values=None, # 待透视的数据 rownames=None, # 行列名字 colnames=None, aggfunc=None, # 透视的函数 margins=False, # 汇总及名称设置 margins_name='All', dropna=True, # 舍弃缺失...
apply()(column-/ row- /table-wise): 接受一个函数,它接受一个 Series 或 DataFrame 并返回一个具有相同形状的 Series、DataFrame 或 numpy 数组,其中每个元素都是一个带有 CSS 属性的字符串-值对。此方法根据axis关键字参数一次传递一个或整个表的 DataFrame 的每一列或行。对于按列使用axis=0、按行使用...
row['FTR'] if [((home == TEAM) & (ftr == 'D')) | ((away == TEAM) & (ftr == 'D'))]: result = 'Draw' elif [((home == TEAM) & (ftr != 'D')) | ((away == TEAM) & (ftr != 'D'))]: result = 'No_Draw' else: result = 'No_Game' return result ...