# 将目标列的数据类型转换为与替换值相匹配的数据类型 df['column_name'] = df['column_name'].astype(target_data_type) # 使用replace方法进行替换操作 df['column_name'].replace(to_replace=old_value, value=new_value, inplace=True) 需要注意的是,上述
Using the map() function to replace values of a column in a pandas DataFrameThe map() function can apply some function or collector on all the elements of a Series object or a DataFrame. We can use it to detect and replace values of a column in a DataFrame. We have to specify the ...
import pandas as pd # 读取数据集 df = pd.read_csv('data.csv') 接下来,使用replace()函数来替换值。该函数可以接受一个字典作为参数,字典的键表示要替换的值,字典的值表示替换后的值。在这里,我们可以将要替换的值设置为源列的值,替换后的值设置为目标列的值。假设我们要将"source_column"列的值替换为...
Python program to replace a character in all column names# Importing pandas package import pandas as pd # Creating a dictionary d = { '(A)':[1,2,3,4], '(B)':['A','B','C','D'], '(C)':[True,False,True,False], '(D)':[1.223,3.224,5.443,6.534] } # Creating a ...
df.drop([column_name], axis=1, inplace=True) CommonQuery.modify_df_rename(df, rename) @staticmethod def modify_df_rename(df: pd.DataFrame, name_to_show_dict: Dict, ): """ 对pd.DataFrame列名重命名 """ if not df.empty: if name_to_show_dict: ...
Python program to replace all values in a column, based on condition # Importing pandas packageimportpandasaspd# creating a dictionary of student marksd={"Players":['Sachin','Ganguly','Dravid','Yuvraj','Dhoni','Kohli'],"Format":['ODI','ODI','ODI','ODI','ODI','ODI'],"Runs":[15921...
df.replace(['已',np.nan],['是','否']) 三、重命名 rename() 在数据处理的过程有时候需要对列索引进行重命名,一个典型的例子就是对于数据的检索或其他操作df[column]对于任意列名均有效,但是df.column只在列名是有效的Python变量名时才有效。
5. replace 顾名思义,replace是用来替换df中的值,赋以新的值。用法:DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')参数解释:to_replace:被替换的值value:替换后的值inplace:是否要改变原数据,False是不改变,True是改变,默认是Falselimit:...
例如:df = df.columns.str.replace("old_name", "new_name")。已经成功地将列名改为ID、Name和...
对于column names使用正则表达式: # 法一:需要先定义一个正则表达式函数regular_function temp = data.columns.to_list() temp = list(map(regular_function,temp)) data.columns = temp # 法二:直接用replace new_name = out_df.columns.str.replace(r'^[A-Za-z][0-9]*\-','',regex=True).values ...