df.memory_usage(deep=True) Index24A24B185C3D24dtype: int64 我们看到B列实际上占用了 185 个字节。 指定索引=False 要排除索引(行标签)的内存使用情况: df.memory_usage(index=False) A24B24C3D24dtype: int64 注:本文由纯净天空筛选整理自Isshin Inada大神的英文原创作品Pandas DataFrame | memory_usage method。非经...
import pandas as pd df = pd.read_csv('data.csv') print(df.memory_usage()) 运行一下定义与用法 memory_usage() 方法返回包含每列内存使用情况的 Series。语法 dataframe.memory_usage(index, deep)参数 这些参数都是 关键字参数。参数值描述 index True|False 可选。默认为 True。指定是否包含索引(及其...
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.memory_usage方法的使用。 原文地址:...
他会返回dataframe的行数,列数,列名对应的index,数据类型,非空值和memory usage。 所以第一个df.info()就是为了找出你要删的列明的起始index和终止index,注意,如果你要删2-4列,stop_index应该是5才会把第4列删掉。第二个df.info()是为了double check最后的数据列都是你想要的,如果还有要删列还可以循环进行...
memory_usage:bool,str,可选 指定是否应显示DataFrame元素(包括索引) 的总内存使用情况。默认情况下, 这遵循pandas.options.display.memory_usage设置。 True始终显示内存使用情况。 False永远不会显示内存使用情况。 ‘deep’的值等效于“真正的内省”。
def memory_usage(df): return(round(df.memory_usage(deep=True).sum() / 1024 ** 2, 2)) df = pd.DataFrame(np.random.randint(0, 100, size=(10000000, 5))) df[df <= 90] = 0 print('memory_usage(df):',memory_usage(df)) df_1 = df.astype("uint8") print('memory_usage(df_1...
Python pandas.DataFrame.memory_usage函数方法的使用,Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
Expected Output: Summary of the basic information about this DataFrame and its data: <class 'pandas.core.frame.DataFrame'> Index: 10 entries, a to j Data columns (total 4 columns): ... dtypes: float64(1), int64(1), object(2) memory usage: 400.0+ bytes None Click...
DataFrame将以尽量模仿 REPL 输出的方式写入。index_label将放在第二行而不是第一行。您可以通过将to_excel()中的merge_cells选项设置为False将其放在第一行。 df.to_excel("path_to_file.xlsx", index_label="label", merge_cells=False)• 1
Size mutability: columns can beinserted and deletedfrom DataFrame and higher dimensional objects Automatic and explicitdata alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and letSeries,DataFrame, etc. automatically align the data for you ...