dropna()可以删除包含至少一个缺失值的任何行或列。# Drop all the rows where at least one element is missingdf = df.dropna() # or df.dropna(axis=0) **(axis=0 for rows and axis=1 for columns)# Note: inplace=True modifies the DataFrame rather than creating a new onedf.dropna(inpl...
str.strip()函数用于删除字符串值开头或结尾可能出现的任何额外空格。 # In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() replace()函数用于用新值替换DataFrame列中的特定值。 # Replace ...
函数用于删除字符串值开头或结尾可能出现的任何额外空格。 # In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() 函数用于用新值替换DataFrame列中的特定值。 # Replace values in dataset df ...
函数用于删除字符串值开头或结尾可能出现的任何额外空格。 # In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() replace() 函数用于用新值替换DataFrame列中的特定值。 # Replace values in ...
# In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() replace()函数用于用新值替换DataFrame列中的特定值。 # Replace values in dataset ...
# In Customer Segment column,convert names to lowercase and remove leading/trailing spaces df['Customer Segment']=df['Customer Segment'].str.lower().str.strip() replace()函数用于用新值替换DataFrame列中的特定值。 代码语言:javascript 复制
# In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() 1. 2. replace() 1. 函数用于用新值替换DataFrame列中的特定值。 # Replace values in dataset ...
可以添加额外的unicode字符从这里,你希望像上面的例子https://jkorpela.fi/chars/spaces.html ...
'0.0\t0\t5\t6.31000\t\t\n5.29559\t2.38176\t0.51521\t0.04454\t0.00000\t\n0\t0\t0\...
# In Customer Segment column, convert names to lowercase and remove leading/trailing spaces df['Customer Segment'] = df['Customer Segment'].str.lower().str.strip() replace() 函数用于用新值替换DataFrame列中的特定值。 # Replace values in dataset df = df.replace({"CA": "California", "...