Transform data with ease! This Pandas cheat sheet is your key to sorting, analyzing, and visualizing like an expert.
4. 正则表达式 regex 5. tidy 数据整齐的逻辑 6. Reshaping data:长宽数据的重构 7. 排序、重命名列和删除某些列 8. 筛选某些行 9. 筛选某些列 10. 筛选某些行和列:loc,iloc,at,iat Python 相关的 Cheatsheet 集合:王几行xing:【Python光速入门】Python 数据分析/机器学习 Cheatsheets 最新大集合(共27张)...
如果熟悉Regex,那么借助cuDF,在GPU上从文档中提取有用信息就变得易如反掌了。例如,如果想找到并提取文档中所有符合[a-z]*flow 模式(如ataflow、workflow或flow)的单词,只需要执行以下操作: df['string'].str.findall('([a-z]*flow)') 从日期中提取有用的特征或查询特定时间段的数据也变得更加容易和快速,...
NotebookDescription regex Regular expression cheat sheet useful in data wrangling. algorithmia Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition....
regexRegular expression cheat sheet useful in data wrangling. algorithmiaAlgorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition. ...
Regular Expression Extraction: df['column'].str.extract(r'(regex)')27. Data Normalization and StandardizationMin-Max Normalization: (df['column'] - df['column'].min()) / (df['column'].max() - df['column'].min()) Z-Score Standardization: (df['column'] - df['column'].mean()) ...
RAPIDS allows you to not only read strings into the GPU memory, but also extract features, process, and manipulate them. If you are familiar with Regex then extracting useful information from a document on a GPU is now a trivial task thanks to cuDF. For example, if you want to find...
In this tutorial, we'll see how to solve Pandas error: ValueError: All arrays must be of the same length First, we'll create an example of how
语法:replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None) importnumpyasnpimportpandasaspd frame=pd.DataFrame(np.random.randn(4,3),columns=list('abc'),index=['a','b','c','d'])print(frame)# a b c#a -0.074178 0.217576 0.4890...
Continually updated data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines. - zh