DataFrame.to_csv()将 DataFrame 写入到 CSV 文件path_or_buffer(目标路径或文件对象),sep(分隔符),index(是否写入索引),columns(指定列),header(是否写入列名),mode(写入模式) 本文以nba.csv为例,你可以下载 nba.csv或打开 nba.csv查看。 pd.read_csv() - 读取 CSV 文件 rea
索引列: 使用index_col参数可以指定用作DataFrame索引的列。例如,如果第一列是索引列: data = pd.read_csv('data.csv', index_col=0) 布尔索引: 如果你需要根据某个列中的布尔值进行过滤,可以使用usecols参数仅选择包含这些值的列。例如,选择所有包含“True”值的列: data = pd.read_csv('data.csv', use...
pd.read_csv("stock_day2.csv", names=["open","high","close","low","volume","price_change","p_change","ma5","ma10","ma20","v_ma5","v_ma10","v_ma20","turnover"]) 2.写入CSV文件:datafram.tocsv() DataFrame.to_csv(path_or_buf=None,sep=',',columns=None,header=True,i...
df.to_csv('new_file_name.csv', index=False)6. 更多高级功能 Pandas 还支持许多其他功能,比如设置索引、重命名列、选择特定列、筛选行等。# 设置某列为索引 df.set_index('column_name', inplace=True)# 重命名列 df.rename(columns={'old_name': 'new_name'}, inplace=True)# 选择特定列 selecte...
以下是read_csv完整的参数列表:pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default, delimiter=None, header='infer', names=NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None,...
index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果设置为某个列的位置(整数)或列名(字符串),则该列将被用作DataFrame的索引。 import pandas as pd
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default**,** delimiter=None**,** header='infer’, names=NoDefault.no_default**,** index_col=None**,** usecols=None**,** squeeze=False**,** prefix=NoDefault.no_default**,** mangle_dupe_cols=True**,** dtype=None**,** engi...
names:在 CSV 文件中没有一行来存储列名,可以使用 names 自己指定,并且设置 header=None。index_col:...
pd.read_csv(filepath_or_buffer:Union[str,pathlib.Path,IO[~AnyStr]],sep=',',delimiter=None,header='infer',names=None,index_col=None,usecols=None,squeeze=False,prefix=None,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,...
示例1:import pandas as pd# 创建DataFramedata = {'Name': ['Alice', 'Bob', 'Carol'],'Age': [25, 30, 35]}df = pd.DataFrame(data)# 将DataFrame写入CSV文件df.to_csv('output.csv', index=False)# 读取写入的CSV文件并打印df_read = pd.read_csv('output.csv')print(df_read)输出结果:...