read_csv('http://127.0.0.1:8000/static/data.csv') print(df3) # 读取文件对象 with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, delimiter(同sep,分隔符) 示例如下: 代码语言:python 代码运行次数:0 ...
# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/...
read_csv('data.csv', sep=' ') 编码: 如果你需要指定文件的编码格式,可以使用encoding参数。例如,对于UTF-8编码的文件: data = pd.read_csv('data.csv', encoding='utf-8') 指定列名: 如果CSV文件的第一行包含列名,则它们将被自动识别并用作DataFrame的列标签。如果你需要指定自己的列名,可以使用header参...
pandas.read_csv(filepath_or_buffer, sep=NoDefault.no_default**,** delimiter=None**,** header='infer’, names=NoDefault.no_default**,** index_col=None**,** usecols=None**,** squeeze=False**,** prefix=NoDefault.no_default**,** mangle_dupe_cols=True**,** dtype=None**,** engi...
df2 = pandas.read_csv(file_path)print(df2)# 读取url地址df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv')print(df3)# 读取文件对象withopen('data.csv', encoding='utf8')asfp: df4 = pandas.read_csv(fp)print(df4) ...
读取CSV(逗号分割)文件到DataFrame 也支持文件的部分导入和选择迭代 更多帮助参见:http://pandas.pydata.org/pandas-docs/stable/io.html 参数: filepath_or_buffer: str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO) ...
with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, delimiter(同sep,分隔符) 示例如下: df1 = pandas.read_csv('data.csv', sep=',') print(df1) ...
使用read_csv函数并指定正确的编码: 如果文件是以UTF-8编码保存的,你通常不需要额外设置编码,因为Pandas默认使用UTF-8。但如果文件使用了其他编码,如GBK、ISO-8859-1等,你需要在read_csv函数中通过encoding参数指定正确的编码。例如,如果文件是GBK编码的,你应该这样读取: python data = pd.read_csv('file.csv',...
read_csv方法 我们将学习的第一个方法是read_csv,它允许我们将逗号分隔值(CSV)文件和原始文本(TXT)文件读取到一个DataFrame中。 read_csv函数非常强大,您可以在导入时指定一组非常广泛的参数,这些参数允许我们通过指定正确的结构、编码和其他细节来准确配置数据的读取和解析。最常见的参数如下: ...
文件损坏:CSV 文件可能已损坏或格式不正确。尝试使用文本编辑器打开文件,检查其内容是否有异常。 文件编码问题:read_csv() 函数默认使用 utf-8 编码来读取文件。如果文件的编码不是 utf-8,可能会导致读取失败。你可以尝试通过 encoding 参数指定正确的编码。 pandas 版本问题:确保你使用的 pandas 版本与你的 Python...