要实现这一点,你可以使用pandas的read_csv()函数,并通过传递URL作为参数来指定数据源。例如: import pandas as pd url = 'https://example.com/data.csv' df = pd.read_csv(url) 通过这种方式,pandas会自动从指定的URL下载CSV文件,并将其解析为DataFrame对象,你可以进行
读取一个url地址,http://127.0.0.1:8000/static/data.csv, 此地址是一个data.csv文件在线下载地址 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df3=pandas.read_csv('http://127.0.0.1:8000/static/data.csv')print(df3) 也可以是一个文件对象 代码语言:javascript 代码运行次数:0 运行 AI代码解释...
# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/...
import pandas as pd url = "https://example.com/data.csv" # 替换为你要下载的CSV文件的URL # 使用Pandas的read_csv函数从URL读取CSV文件 df = pd.read_csv(url) # 保存CSV文件到本地 df.to_csv("data.csv", index=False) print("CSV文件保存成功!") 上述代码首先使用Pandas的read_csv函数从...
df2 = pandas.read_csv(file_path)print(df2)# 读取url地址df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv')print(df3)# 读取文件对象withopen('data.csv', encoding='utf8')asfp: df4 = pandas.read_csv(fp)print(df4) ...
pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。
importpandasaspdpd.read_csv("girl.csv") 还可以是一个URL,如果访问该URL会返回一个文件的话,那么pandas的read_csv函数会自动将该文件进行读取。比如:我们用fastapi写一个服务,将刚才的文件返回。 pd.read_csv("http://localhost/girl.csv") 里面还可以是一个_io.TextIOWrapper,比如: ...
import pandas as pd pd.read_csv("girl.csv") # 还可以是一个URL,如果访问该URL会返回一个文件的话,那么pandas的read_csv函数会自动将该文件进行读取。比如:我们用fastapi写一个服务,将刚才的文件返回。 pd.read_csv("http://localhost/girl.csv") # 里面还可以是一个 _io.TextIOWrapper,比如: f = ope...
类文件对象是指具有 read() 方法的对象,例如文件句柄(例如通过内置 open 函数)或StringIO。 示例如下: # 读取字符串路径 import pandas from pathlib import Path # 1.相对路径,或文件绝对路径 df1 = pandas.read_csv('data.csv') print(df1) # 文件路径对象Path ...
# 读取url地址 df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv') print(df3) # 读取文件对象 with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, ...