pd.read_csv('data.csv')# 如果文件与代码文件在同一目录下 pd.read_csv('data/my/my.data')#CSV文件的扩展名不一定是.csv # 本地绝对路径 pd.read_csv('/user/gairuo/data/data.csv')# 使用URLpd.read_csv('https://www.gairuo.com/file/data/dataset/GDP-China.csv') 需要注意的是,Mac中和Win...
b,1\na,b,2\nc,d,3" pd.read_csv(StringIO(data), nrows=1) #看前一行
pd.read_csv(StringIO(data), converters={'x': foo, 'y': lambda x: x*3}) # 输出: x y 0 as 111 1 bs 222 # 使用列索引 pd.read_csv(StringIO(data), converters={0: foo, 1: lambda x: x*3}) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 2.14 true_values(真值转换) true_values...
# 字典格式,默认为Nonedata='x,y\na,1\nb,2'def foo(p):return p+'s'# x应用函数,y使用lambdapd.read_csv(StringIO(data),converters={'x': foo,'y': lambda x: x*3})# 使用列索引pd.read_csv(StringIO(data),converters={0: foo, 1: lambda x: x*3}) 1. 2. 3. 4. 5. 6. 7....
read_csv('data.csv', usecols=lambda x: x == 'True') 自定义日期解析: 如果你需要自定义日期解析的格式,可以使用date_parser参数。这将接受一个函数,该函数将用于解析日期字符串: from datetime import datetime def custom_date_parser(date_string): return datetime.strptime(date_string, '%Y-%m-%d')...
类文件对象是指具有 read() 方法的对象,例如文件句柄(例如通过内置 open 函数)或StringIO。 示例如下: # 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2...
pd.read_csv("girl.csv") 由于指定的分隔符 和 csv文件采用的分隔符 不一致,因此多个列之间没有分开,而是连在一起了。 所以,我们需要将分隔符设置成"\t"才可以。 pd.read_csv('girl.csv', sep='\t') delimiter 分隔符的另一个名字,与 sep 功能相似。
pandas.read_csv() 是最流行的数据分析框架 pandas 中的一个方法。 我们日常使用的时候这个函数也是我们用的最多的,但是pandas.read_csv() 有很多输入参数,其中 filepath或buffer 参数是必不可少的,其余的都是可选的。所以我们一般也不会太关注,但是这些可选参数可以帮我们解决大问题。以下是read_csv完整的...
在pandas中,可以使用 read_csv()函数读取CSV文件,以及使用 to_csv()函数将DataFrame数据写入CSV文件。下面是对这两个函数的详细介绍和示例用法:读取CSV文件:read_csv()read_csv()函数用于从CSV文件中读取数据并创建一个DataFrame对象。语法:pandas.read_csv(filepath_or_buffer, sep=',', header='infer', ...
pandas.read_csv() 是最流行的数据分析框架 pandas 中的一个方法。我们日常使用的时候这个函数也是我们用的最多的,但是pandas.read_csv() 有很多输入参数,其中 filepath或buffer 参数是必不可少的,其余的都是可选的。所以我们一般也不会太关注,但是这些可选参数可以帮我们解决大问题。以下是read_csv完整的参数列...