pandas是一个强大的数据处理和分析库,read_csv是其用于读取 CSV 文件的函数。CSV(Comma-Separated Values)文件是一种常见的数据交换格式,其中数据以逗号分隔。 自动更改小数位的原因 pandas在读取 CSV 文件时,会尝试根据数据自动推断列的数据类型。对于数值类型的列,pandas可能会根据读取到的数据自动调整小数位数,这通...
pd.read_csv('data.csv')# 如果文件与代码文件在同一目录下 pd.read_csv('data/my/my.data')#CSV文件的扩展名不一定是.csv # 本地绝对路径 pd.read_csv('/user/gairuo/data/data.csv')# 使用URLpd.read_csv('https://www.gairuo.com/file/data/dataset/GDP-China.csv') 需要注意的是,Mac中和Win...
pd.read_csv(data, index_col=False) # 不再使用首列作为索引 pd.read_csv(data, index_col=0) # 第几列是索引 pd.read_csv(data, index_col='年份') # 指定列名 pd.read_csv(data, index_col=['a','b']) # 多个索引 pd.read_csv(data, index_col=[0, 3]) # 按列索引指定多个索引 1 ...
read_csv函数的第一个参数是filepath_or_buffer,从参数名我们很容易理解参数的含义。很显然,这个参数用来指定数据的路径的。从官方文档中我们知道这个参数可以是一个str对象、path对象或者类文件对象。 如果是一个str对象,这个str对象必须是一个有效的文件路径: >>>df = pd.read_csv(r'C:\Users\yj\Desktop\dat...
如果不使用dtype参数,pandas 将尝试自动确定每列的类型。我们可以使用dtype参数强制 pandas 使用特定的 dtype。 在这种情况下,我们将强制Price列为float类型。 df=pd.read_csv('btc-market-price.csv',header=None,na_values=['','?','-'],names=['Timestamp','Price'],dtype={'Price':'float'})df.head...
df_csv=pd.read_csv('user_info.csv',skip_blank_lines=False) bool:如果为True则分析索引。 ist of int or names:例如:如果[1、2、3]则尝试将列1、2、3分别解析为单独的日期列。 list of lists.例如:如果为[[1,3]]则组合第1列和第3列,并解析为单个日期列。
read_csv()函数基本介绍: 功能:读取csv文件,构造DataFrame pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, fals...
read_csv函数是Pandas库中用于从CSV文件中读取数据的函数。下面是一些read_csv函数常用的参数及其详细解释: filepath_or_buffer: 描述:文件路径或者类文件对象(StringIO或者BytesIO)。 示例:'file.csv'。 sep: 描述:字段之间的分隔符,默认为逗号(',')。
read_csv() 是从 CSV 文件中读取数据的主要方法,将数据加载为一个 DataFrame。 importpandasaspd# 读取 CSV 文件,并自定义列名和分隔符df=pd.read_csv('data.csv',sep=';',header=0,names=['A','B','C'],dtype={'A':int,'B':float})print(df) ...
pandas对纯文本的读取提供了非常强力的支持,参数有四五十个。这些参数中,有的很容易被忽略,但是在实际工作中却用处很大。pd.read_csv()的格式如下: read_csv(reader:FilePathOrBuffer,*,sep:str=...,delimiter:str|None=...,header:int|Sequence[int]|str=...,names:Sequence[str]|None=...,index_col:...