# 读取字符串路径importpandasfrompathlibimportPath# 1.相对路径,或文件绝对路径df1=pandas.read_csv('data.csv')print(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/...
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"utf-8",例子如下: 1importpandas as pd2importnumpy as np34head = ["表头1","表头2","表头3"]5l = [[1 ...
df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv') print(df3) # 读取文件对象 with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符,默认为, delimiter(同sep,分隔符) 示例如下: df1 = pandas.rea...
pandas中pd.read_csv()方法中的encoding参数 pandas中pd.read_csv()⽅法中的encoding参数 当使⽤pd.read_csv()⽅法读取csv格式⽂件的时候,常常会因为csv⽂件中带有中⽂字符⽽产⽣字符编码错误,造成读取⽂件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"...
import pandas as pd data_string = "name,age\nAlice,30\nBob,25" df = pd.read_csv(io.StringIO(data_string)) 在这个示例中,使用了io.StringIO类将字符串转换为文件对象,然后传递给read_csv()函数。 5. 指定编码方式 有时候,CSV文件可能使用不同的字符编码方式保存,可以通过encoding参数来指定编码方...
前两天,我在进行数据处理时候,处理得出了一个CSV文件,将之放在excel里面进行了修改{进行了排序和数值添加}。修改后用python的read_csv函数读入进行进一步处理,开始就是默认参数,encoding = "utf -8",结果程序报错,接着我又设置为"gbk"也报错,后来又百度一番,设置了参数"gb18030"才成功读入。
read_csv函数,不仅可以读取csv文件,同样可以直接读入txt文件(默认读取逗号间隔内容的txt文件)。 pd.read_csv('data.csv') pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, ...
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的encoding参数设置为"gbk"或者"utf-8"。(这个方法在上一篇博客有介绍) 据我个人经验总结(如果有错误,还希望大神斧正),在含有中文编码的情况下,to...
read_csv('file.csv', encoding=encoding) break except UnicodeDecodeError: continue 使用Python内置函数open读取文件若pandas的读取方法仍无法解决问题,可考虑先使用Python的内置open函数读取文件,再传递给pandas。示例代码: import pandas as pd import csv with open('file.csv', newline='', encoding='utf-8')...
df=pd.read_csv('data.csv',encoding='utf-8')print(df.head()) 1. 2. 3. 大文件读取 问题描述:读取大文件时可能会导致内存不足。 解决方案:使用chunksize参数分块读取文件。 chunk_size=10000chunks=[]forchunkinpd.read_csv('large_data.csv',chunksize=chunk_size):chunks.append(chunk)df=pd.concat...