常用参数概述 pandas的 read_csv 函数用于读取CSV文件。以下是一些常用参数: filepath_or_buffer: 要读取的文件路径或对象。 sep: 字段分隔符,默认为,。 delimiter: 字段分隔符,sep的别名。 header: 用作列名的行号,默认为0(第一行),如果没有列名则设为None。 names: 列名列表,用于结果DataFrame。 index_col:...
pandas.read_csv(filepath_or_buffer,sep=NoDefault.no_default,delimiter=None,header='infer',names=NoDefault.no_default,index_col=None,usecols=None,squeeze=None,prefix=NoDefault.no_default,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspac...
pd.read_csv(data, index_col=False) # 不再使用首列作为索引 pd.read_csv(data, index_col=0) # 第几列是索引 pd.read_csv(data, index_col='年份') # 指定列名 pd.read_csv(data, index_col=['a','b']) # 多个索引 pd.read_csv(data, index_col=[0, 3]) # 按列索引指定多个索引 1 ...
pandas.read_csv分块读取大文件 最近,下载了一个csv结构的数据集,有1.2G。对该文件试图用pd.read_csv进行读取的时候,发现出现内存不足的情况 ,电脑内存不足,不能一次性的读取。此时我们就需要对csv文件进行分块读取。 在对数据进行分块读取之前,我们需要对pd.read_csv()中的参数进行一定的了解,pandas.read_...
read_csv('data.csv') 分隔符: 默认情况下,read_csv()函数使用逗号作为字段的分隔符。如果你使用其他字符作为分隔符,可以在参数中指定。例如,使用制表符作为分隔符: data = pd.read_csv('data.csv', sep=' ') 编码: 如果你需要指定文件的编码格式,可以使用encoding参数。例如,对于UTF-8编码的文件: data ...
import pandas as pd from io import StringIO data = data = ('col1,col2,col3\na,b,1\na,b,2\nc,d,3') d = pd.read_csv(StringIO(data)) # usecols 过滤列,筛选将要使用的列 使用此参数可以大大加快解析时间并降低内存使用量。 d = pd.read_csv(String... ...
iterator:该参数是一个布尔值,用于指示是否将数据加载到内存中。默认情况下,pandas会将整个文件加载到内存中。 chunksize:该参数用于指定每次迭代读取的行数。当设置为一个正整数时,read_csv函数将返回一个迭代器,每次迭代返回指定数量的行。下面是一个使用read_csv函数的示例代码: import pandas as pd # 读取CSV文...
CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。 Pandas 可以很方便的处理 CSV 文件,常用方法有: 方法名称功能描述常用参数 pd.read_csv()从 CSV 文件读取数据并加载为 DataFramefilepath_or_buffer(路径或文件对象),sep(分隔符),header(行标题),names(自定义列名),dtype(数据类型),index_...
Pandas库read_csv()中用于读取CSV文件的常用参数 filepath_or_buffer--->CSV文件的路径或URL地址。 sep--->CSV文件中字段分隔符,默认为逗号。 delimiter--->CSV文件中字段分隔符,默认为None。 header--->指定哪一行作为列名,默认为0,即第一行。 names...