pd.read_csv('data/my/my.data')#CSV文件的扩展名不一定是.csv # 本地绝对路径 pd.read_csv('/user/gairuo/data/data.csv')# 使用URLpd.read_csv('https://www.gairuo.com/file/data/dataset/GDP-China.csv') 需要注意的是,Mac中和Windows中路径的写法不一样,上例是Mac中的写法,Windows中的相对路...
pandas.read_csv()函数是Pandas库中用于读取CSV(逗号分隔值)文件的函数之一。 本文中洲洲将进行详细介绍pandas.read_csv()函数的使用方法。 一、Pandas库简介 pandas是一个Python包,并且它提供快速,灵活和富有表现力的数据结构。 这样当我们处理"关系"或"标记"的数据(一维和二维数据结构)时既容易又直观。
1. 导入 Pandas 库 首先,需要导入 Pandas 库。通常我们会使用别名 `pd` 来简化代码中的引用。import pandas as pd 2. 读取 CSV 文件 使用 `pd.read_csv()` 函数来读取 CSV 文件。你可以提供相对路径或绝对路径给文件名参数。# 读取CSV文件并创建DataFrame对象 df = pd.read_csv('path_to_your_file.csv...
pd.read_csv(data, skiprows=2) # 跳过前2行 pd.read_csv(data, skiprows=range(2)) # 跳过指定行 pd.read_csv(data, skiprows=[24,234,141]) # 跳过指定行 pd.read_csv(data, skiprows=np.array([2, 6, 11])) # 隔行跳过 pd.read_csv(data, skiprows=lambda x: x % 2 != 0) 1 2 3...
pd.read_csv("girl.csv") 由于指定的分隔符 和 csv文件采用的分隔符 不一致,因此多个列之间没有分开,而是连在一起了。 所以,我们需要将分隔符设置成"\t"才可以。 pd.read_csv('girl.csv', sep='\t') delimiter 分隔符的另一个名字,与 sep 功能相似。
df6 = pandas.read_csv( 'data2.csv', header=None, names=['姓名', '性别', '年龄', '邮箱']) print(df6) index_col 用作行索引的列编号或列名 index_col参数在使用pandas的read_csv函数时用于指定哪一列作为DataFrame的索引。 如果设置为None(默认值),CSV文件中的行索引将用作DataFrame的索引。如果...
pd.read_csv() - 读取 CSV 文件 read_csv() 是从 CSV 文件中读取数据的主要方法,将数据加载为一个 DataFrame。 importpandasaspd# 读取 CSV 文件,并自定义列名和分隔符df=pd.read_csv('data.csv',sep=';',header=0,names=['A','B','C'],dtype={'A':int,'B':float})print(df) ...
pandas.read_csv() 是 pandas 库中的一颗明星函数,专门用来读取CSV文件。CSV(Comma-Separated Values,逗号分隔值)文件是数据交换的“外卖盒”,每一份数据就像盒子里的食材,按照特定格式被分隔开来,方便我们快速拿取。用 read_csv() 函数,我们可以轻松把这些分隔开的食材(数据)装进一个DataFrame“锅”里,...
read_csv函数非常强大,您可以在导入时指定一组非常广泛的参数,这些参数允许我们通过指定正确的结构、编码和其他细节来准确配置数据的读取和解析。最常见的参数如下: filepath:要读取的文件路径。 sep:文件中用作字段分隔符的字符。 header:包含列名称的行的索引(如果没有则为 None)。
【Pandas】read_csv读取文件函数详解 首先来了解一下官方给出的该函数用法 read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values...