1.字段抽取 抽出指定位置数据slice(start,stop) 2.字段拆分 按指定字符sep,拆分已有字符串 split(sep,n,expand=False) sep分隔符,n分割后新增列数,expand是否扩展开为数据框,默认False 3.重置索引 df.set_index('列名') 4.抽取记录 根据条件对数据进行抽取 df[condition] 返回DataFrame condition类型: 比较运算...
同时,由于许多统计特征在等概率不放回的简单随机抽样条件下,是总体统计特征的无偏估计,比如样本均值和总体均值,那么就可以先从整张表中抽出一部分来做近似估计。 sample函数中的主要参数为n, axis, frac, replace, weights,前三个分别是指抽样数量、抽样的方向(0为行、1为列)和抽样比例(0.3则为从总体中抽出30%...
从零开始学Python【4】--pandas(序列部分) 上一期我们介绍了数据分析中常用的numpy模块,从数组的创建、元素的获取、数学+统计函数、随机数的生成、到外部文件的读取。这期我们再来介绍另一个重磅的数据分析常用模块--pandas。该模块更像是R语言中的向量、数据框的处理,接下来我们就一一介绍里面的小知识点。 序列 ...
同时,由于许多统计特征在等概率不放回的简单随机抽样条件下,是总体统计特征的无偏估计,比如样本均值和总体均值,那么就可以先从整张表中抽出一部分来做近似估计。 sample 函数中的主要参数为 n, axis, frac, replace, weights ,前三个分别是指抽样数量、抽样的方向(0为行、1为列)和抽样比例(0.3则为从总体中抽出...
序列(Series)可以理解成是R语言中的向量,Python中的列表、元组的高级版本。为什么说是高级版本呢?因为序列与上期介绍的一维数组类似,具有更好的广播效应,既可以与一个标量进行运算,又可以进行元素级函数的计算。如下例子所示: 列表与常数10相加,报错,显示无法将列表与整形值连接,“+”运算在列表中是连接操作。
从零开始学Python数据分析【3】-- 控制流与自定义函数 从零开始学Python数据分析【4】-- numpy 上一期我们介绍了数据分析中常用的numpy模块,从数组的创建、元素的获取、数学+统计函数、随机数的生成、到外部文件的读取。这期我们再来介绍另一个重磅的数据分析常用模块--pandas。该模块更像是R语言中的向量、数据框...
由于Python从零开始的特性,第2行数据的序号是1。 虽然我们举的是取一行或一列数据的例子,但实际上取多行多列也是可以的,只需要我们把填入的标签换成含标签的列表即可: 实际上,loc/iloc的作用并不只是用来读取数据,它更像是一个定位器,设定参数让它定位到指定位置,想让它读数据就能读,想让它添数据就能添,想...
Python 数据分析包:pandas 基础 pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:...
Series是一种一维的数据结构对象(容器),就好比Python内置数据结构的列表。但是同的是,它显式的有一个称为索引(index)的结构,也就是说Series 是带索引的一维数组。其结构有两部分,索引和值: (1)索引(Index) 索引是Series中每个元素的标签,可以是数字、字符串或者任何可哈希的对象。
1.pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。(百度百科) ...