NaN是指在Pandas库中表示缺失值或异常值的特殊标记。NaN代表"not a number",用于表示缺失的数据或无法计算的结果。 在数据分析和处理过程中,经常会遇到缺失值或异常值的情况。为了保证数据的准确性和一致性,需要对这些值进行处理。NaN的处理方法之一是去除异常值,并用均值替换。
- NaN:NaN(Not a Number的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都能识别它 Pandas将None和NaN视为基本上可互换的,用于指示缺失或空值。为了方便这个约定,有几个有用的函数可以检测,删除和替换Pandas DataFrame中的null值: isnull()notnull()dropna()fillna()replace()interpolate() 使用...
Pandas中缺失值(NaN)的处理(一) 读取数据,若单元格无任何元素,则视为缺失值NaN(Not a Number)。 以2020-2024年阿富汗新冠数据为例,阐述NaN的属性和用法。 2020-2024阿富汗新冠数据 “new_deaths_smoothed”和“total_cases”两列,均有缺失值。 查看NaN的数据类型为浮点型: 行索引为0,列索引为“new_deaths_sm...
Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可以用Pandas中的函数isnull(),notnull(),isna()进行判断。 isnull()和notnull()的结果互为取反,isnull()和isna()的结果一样。 需要特别注意三点: 如果某一列数据全是空值且包含pd.NaT,...
数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值。 一、什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。 1. Pandas中的空值有三个:np.nan (Not a Number) 、 None 和 pd.NaT(时间格式的空值,注意大小写不能错),这三个值可...
通常使用 NA('not available')来代指缺失值 在Pandas的数据结构中,缺失值使用 NaN('Not a Number')进行标识除了汇总统计方法,还可以使用isnull()来对数据中缺失的样本占比、特征大致的缺失情况进行了解。+ View Code 二、缺失值填充---fillna()使用fillna()方法进行缺失值填补...
缺失数据:使用NaN(Not a Number)来表示缺失数据。其值等于np.nan。内置的None值也会被当做NaN处理。 处理缺失数据的相关方法: dropna() 过滤掉值为NaN的行 fillna() 填充缺失数据 isnull() 返回布尔数组,缺失值对应为True notnull() 返回布尔数组,缺失值对应为False ...
【注意】:Panda读取的数值型数据,缺失数据显示“NaN”(not a number)。 数据值的处理方法 主要就是两种方法: 删除存在缺失值的个案; 缺失值插补。 【注意】缺失值的插补只能用于客观数据。由于主观数据受人的影响,其所涉及的真实值不能保证。 1、删除含有缺失值的个案(2种方法) (1)简单删除法 简单删除法是对...
在使用Pandas读取Excel文件时,有时会遇到“BadZipFile: File is not a zip file”的错误。这个错误通常是由于以下几个原因造成的: 文件损坏:Excel文件可能已损坏或不完整,导致Pandas无法正确读取。 文件格式不正确:你可能正在尝试读取一个不是Excel文件的文件,或者文件的扩展名与实际格式不匹配。 文件编码问题:某些...
pandas will attempt to infer the `dtype`from the data.Note that when `data` is a NumPy array, ``data.dtype`` is*not* used for inferring the array type. This is becauseNumPy cannot represent all the types of data that can beheld in extension arrays.Currently, pandas will infer an exte...