values#两个NaN值不相等 Out[226]: array([False]) pandas读取文件时那些值被视为缺失值 NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’,‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’,‘NULL’, ‘NaN’, ‘n/a...
pandas中na_values与keep_default_na 我们在使用pandas读取文件时,常会遇到某个字段为NaN。 一般情况下,这时因为文件中包含空值导致的,因为pandas默认会将 '-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A','#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan'...
使用na_values参数处理缺失值 我们可以使用na_values参数定义我们希望被识别为 NA/NaN 的值。在这种情况下,空字符串''、?和-将被识别为 null 值。 df=pd.read_csv('btc-market-price.csv',header=None,na_values=['','?','-'])df.head() image.png 使用names参数设置列名 我们将使用names参数添加列名。
na_values:可以额外指定缺失值,比如99作为缺失值,na_values=[99] keep_default_na:布尔值,默认为True,即na_values额外指定的值会追加到现有的缺失值中。设为False则只使用na_values已有的值 na_filter:布尔值,默认为True,即把缺失值编码成NaN。设为False,则不会将任何值编码成NaN。可在不含缺失值的情况下加...
pandas中na_values与keep_default_na 我们在使用pandas读取文件时,常会遇到某个字段为NaN。 一般情况下,这时因为文件中包含空值导致的,因为pandas默认会将 ‘-1.#IND‘, ‘1.#QNAN‘, ‘1.#IND‘, ‘-1.#QNAN‘, ‘#N/A N/A‘,‘#N/A‘, ‘N/A‘, ‘NA‘, ‘#NA‘, ‘NULL‘, ‘NaN‘, ...
pd.read_csv('girl.csv', sep="\t", na_values={"name": ["古明地觉","博丽灵梦"],"result": ["对"]}) 通过字典实现只对指定的列进行替换。 keep_default_na 我们知道,通过 na_values 参数可以让 pandas 在读取 CSV 的时候将一些指定的值替换成空值,但除了 na_values 指定的值之外,还有一些默...
# import pandas libraryimportpandasaspd# read a csv filedf=pd.read_csv('Example.csv',na_values="not available")# show the dataframeprint(df) 输出: 示例2:现在使用na_values参数告诉 pandas 他们认为“不可用”为 NaN 值,并在“不可用”的位置打印 NaN。
检查数据帧中的NA值。使用isna()函数,它将返回一个布尔值的数据帧,其中True表示NA值,False表示非NA值。 代码语言:txt 复制 na_values = df.isna() 可以选择使用any()函数来检查整个数据帧是否包含NA值。它将返回一个布尔值,True表示数据帧中至少有一个NA值,False表示数据帧中没有NA值。 代码语言:txt 复...
read_csv('data.csv', na_values=['NaN']) 限制数据行数: 使用nrows参数可以限制读取的行数。这对于大型文件非常有用,因为它可以减少内存使用量: data = pd.read_csv('data.csv', nrows=100) # 只读取前100行数据 索引列: 使用index_col参数可以指定用作DataFrame索引的列。例如,如果第一列是索引列: ...
于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。 6、处理Excel里的注释行 不仅Python是可以写注释的,Excel也是可以写注释的。很多人没有用过,用过的朋友在评论区说一下你为什么给Excel写注释吧~? pandas提供了处理Excel注释行的方法。