map()中的参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。 s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) s 0 cat 1 dog 2 NaN 3 rabbit na_action为默认值的情况 s.map('I am a {}'.format) 0...
map()还有一个参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。 2.2apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。 但相较于map()针对单列Series进行处理,一...
Series.map(arg, na_action=None) -> Series 1. map方法适用于Series,它基于传递给函数的参数将每个值进行映射。arg可以是一个函数——就像apply可以取的一样——也可以是一个字典或一个Series。 na_action是指定序列的NaN值如何处理。当设置为"ignore "时,arg将不会应用于NaN值。 例如想用映射替换性别的分类...
map()还有一个参数na_action,类似R中的na.action,取值为'None'或'ingore',用于控制遇到缺失值的处理方式,设置为'ingore'时串行运算过程中将忽略Nan值原样返回。 2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出,但相较于map()针对单列Series进行...
na_action是指定序列的NaN值如何处理。当设置为"ignore "时,arg将不会应用于NaN值。 例如想用映射替换性别的分类表示时: GENDER_ENCODING = { "male": 0, "female": 1 } df["gender"].map(GENDER_ENCODING) 虽然apply不接受字典,但也可以完成同样的操作。
一些接收单个输入值且有输出的对象也可以用map()方法来处理: data.gender.map("This kid's gender is {}".format) 1. map()还有一个参数na_action,类似R中的na.action,取值为None或ingore,用于控制遇到缺失值的处理方式,设置为ingore时串行运算过程中将忽略Nan值原样返回。
applymap DataFrame.applymap(func, na_action=None, **kwargs) -> DataFrame applymap与map非常相似,并且是使用apply内部实现的。applymap就像map一样,但是是在DataFrame上以elementwise的方式工作,但由于它是由apply内部实现的,所以它不能接受字典或Series作为输入——只允许使用函数。
map()还有一个参数na_action,类似R中的na.action,取值为'None'或'ingore',用于控制遇到缺失值的处理方式,设置为'ingore'时串行运算过程中将忽略Nan值原样返回。 2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出,但相较于map()针对单列Series进行...
map方法主要是运用在Series中,用来对Series中的元素进行转化。其语法及参数说明如下:语法:se.map(arg, na_action=None)参数说明:· arg:函数、字典或序列对应的映射 · na_action: 是否忽略NA,默认None 当传入参数arg为序列时,会将传入的序列中与原序列value相匹配的key,所对应的value映射到原序列的value中...
DataFrame.applymap(func, na_action=None, **kwargs)->DataFrame applymap与map非常相似,并且是使用apply内部实现的。applymap就像map一样,但是是在DataFrame上以elementwise的方式工作,但由于它是由apply内部实现的,所以它不能接受字典或Series作为输入——只允许使用函数。