灵活创建和管理数据集,通过自定义创建 DataFrame ,可以方便地将各种格式的数据转化为 Pandas 的数据格式,为后续分析做好准备。 高效数据清洗与预处理,利用fillna、unique等函数,能够快速处理缺失值、去重等数据清洗工作,为模型输入做好数据预处理。 数据融合整合,Pandas 合并方法让您能够方便地横向或纵
import numpy as np import matplotlib.path as mpath # 数据准备 species = df['species'].unique() data = [] # 只选择数值列(排除 species 列) numeric_columns = df.columns[:-1] for s in species: data.append(df[df['species'] == s][numeric_columns].mean().values) # 将 data 列表转换...
# 进行字符串分割 temp_list = [i.split(",") for i in df["Genre"]] # 获取电影的分类 genre_list = np.unique([i for j in temp_list for i in j]) # 增加新的列,创建全为0的dataframe temp_df = pd.DataFrame(np.zeros([df.shape[0],genre_list.shape[0]]),columns=genre_list) 2...
In [21]: sa.a = 5 In [22]: sa Out[22]: a 5 b 2 c 3 dtype: int64 In [23]: dfa.A = list(range(len(dfa.index))) # ok if A already exists In [24]: dfa Out[24]: A B C D 2000-01-01 0 0.469112 -1.509059 -1.135632 2000-01-02 1 1.212112 0.119209 -1.044236 2000-01...
您可以使用index,columns和values属性访问数据帧的三个主要组件。columns属性的输出似乎只是列名称的序列。 从技术上讲,此列名称序列是Index对象。 函数type的输出是对象的完全限定的类名。 变量columns的对象的全限定类名称为pandas.core.indexes.base.Index。 它以包名称开头,后跟模块路径,并以类型名称结尾。 引用对...
1'''2ndim:维度3shape:形状4size:获取元素的长度5dtype:数据类型6index:获取所有的索引7values:获取所有的值8name:获取名称9head():快速查看Series对象的样式,获取前5条数据10tail():快速查看Series对象的样式,获取最后5条数据11''' 代码演示示例:
最重要的是,如果您100%确定列中没有缺失值,则使用df.column.values.sum()而不是df.column.sum()可以获得x3-x30的性能提升。在存在缺失值的情况下,Pandas的速度相当不错,甚至在巨大的数组(超过10个同质元素)方面优于NumPy。 第二部分. Series 和 Index Series是NumPy中的一维数组,是表示其列的DataFrame的基本组...
sq=s.unique() print(s) print(sq,type(sq)) print(pd.Series(sq)) # 重新排序 sq.sort() print(sq) 3.值计数 # 值计数:.value_counts() # 得到一个新的Series,计算出不同值出现的频率 # sort参数:排序,默认为True s= pd.Series(list('asdvasdcfgg')) ...
Python program to get unique values from multiple columns in a pandas groupby # Importing pandas packageimportpandasaspd# Importing numpy packageimportnumpyasnp# Creating a dictionaryd={'A':[10,10,10,20,20,20],'B':['a','a','b','c','c','b'],'C':['b','d','d','f','e...
DataFrame.pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False)pivot_tabel对数据格式要求不高,而且支持aggfunc/fillvalue等参数,所以应用更加广泛。 pivot_table函数的参数有values(单元格值)、index(索...