# Quick examples of getting unique values in columns# Example 1: Find unique values of a columnprint(df['Courses'].unique())print(df.Courses.unique())# Example 2: Convert to listprint(df.Courses.unique().tolist())# Example 3: Unique values with drop_duplicatesdf.Courses.drop_duplicates(...
To count unique values in the Pandas DataFrame column use theSeries.unique()function along with the size attribute. Theseries.unique()function returns all unique values from a column by removing duplicate values and the size attribute returns a count of unique values in a column of DataFrame. S...
In [1]: import numba In [2]: def double_every_value_nonumba(x): return x * 2 In [3]: @numba.vectorize def double_every_value_withnumba(x): return x * 2 # 不带numba的自定义函数: 797 us In [4]: %timeit df["col1_doubled"] = df["a"].apply(double_every_value_nonumba) ...
灵活创建和管理数据集,通过自定义创建 DataFrame ,可以方便地将各种格式的数据转化为 Pandas 的数据格式,为后续分析做好准备。 高效数据清洗与预处理,利用fillna、unique等函数,能够快速处理缺失值、去重等数据清洗工作,为模型输入做好数据预处理。 数据融合整合,Pandas 合并方法让您能够方便地横向或纵向合并多个数据源,...
To find unique values in multiple columns, we will use the pandas.unique() method. This method traverses over DataFrame columns and returns those values whose occurrence is not more than 1 or we can say that whose occurrence is 1.Syntax:pandas.unique(values) # or df['col'].unique() ...
In [25]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column In [26]: dfa Out[26]: A B C D 2000-01-01 0 0.469112 -1.509059 -1.135632 2000-01-02 1 1.212112 0.119209 -1.044236 2000-01-03 2 -0.861849 -0.494929 1.071804 2000-01-04 3 0.721555 -...
评论 In [15]: import pandas as pd import numpy as np #通过传递一个数组,时间索引以及列标签来创建一个DataFrame dates = pd.date_range('20231101',periods=10) df = pd.DataFrame(np.random.randn(10,4), index=dates, columns=list('ABCD')) df.to_excel('out_table.xlsx', #导出数据路径 ...
import numpy as np import matplotlib.path as mpath # 数据准备 species = df['species'].unique() data = [] # 只选择数值列(排除 species 列) numeric_columns = df.columns[:-1] for s in species: data.append(df[df['species'] == s][numeric_columns].mean().values) # 将 data 列表转换...
1'''2ndim:维度3shape:形状4size:获取元素的长度5dtype:数据类型6index:获取所有的索引7values:获取所有的值8name:获取名称9head():快速查看Series对象的样式,获取前5条数据10tail():快速查看Series对象的样式,获取最后5条数据11''' 代码演示示例:
s.values#返回值array([2, 8, 1, 7]) s.dtype#元素的类型dtype('int32') 5、Series的常用方法 head(),tail() unique() isnull(),notnull() add() sub() mul() div() 可以把Series看成一个不定长的有序字典 s = Series(data=np.random.randint(0,10,size=(5,)),index=['a','b','c...