on='product_id', how='inner') cudf_join_time = time.time() - start print(f"Pandas Join 时间: {pandas_join_time:.4f} 秒") print(f"cuDF Join 时间: {cudf_join_time:.4f} 秒") print(f"cuDF Join时间比Pandas快: {pandas_join_tim
Pandas DataFramejoin()method doesn’t support joining two DataFrames on columns asjoin()is used for indices. However, you can convert column to index and used it on join. The best approach would be usingmerge()method when you wanted to join on columns. There are several methods for joining...
Pandas 数据结构 - DataFrame DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。 DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。 DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个...
2. merge 合并 erge 实现类似于数据库的join 操作。 有两种调用方式:pd.merge()和df1.merge(df2)。 语法以及参数: defmerge(left: DataFrame | Series, right: DataFrame | Series, how:str="inner", on: IndexLabel |None=None, left_on: IndexLabel |None=None, right_on: IndexLabel |None=None, ...
df['column_name'].mean()# 计算列的最大值max_value = df['column_name'].max()# 计算列的最小值min_value = df[ 'column_name' ].min()# 统计列中非空值的个数count = df['column_name'].count() # 对DataFrame进行分组并重置索引grouped_data = df.groupby('column_name')['other_column'...
有一个参数可以指定key,这个key的作用是指定多级的column # 注意二:concat要求没有重复的index,使用前先检查 data = pd.concat([sub_data1,sub_data2],axis=1,join='outer') 法三:merge方法 # 按照列合并 data = data.merge(revenue,on=['year','month','day'],how='outer') # 按照index合并 pd....
"""sort by value in a column""" df.sort_values('col_name') 多种条件的过滤 代码语言:python 代码运行次数:0 运行 AI代码解释 """filter by multiple conditions in a dataframe df parentheses!""" df[(df['gender'] == 'M') & (df['cc_iso'] == 'US')] 过滤条件在行记录 代码语言:pyth...
s.value_counts() # 统计某个值出现次数 df.apply(pd.Series.value_counts) # 查看DataFrame对象中每列的唯值和计数 df.isnull().any() # 查看是否有缺失值 df[df[column_name].duplicated()] # 查看column_name字段数据重复的数据信息 4.数据选取 常用的数据选取的10个用法: df[col] # 选择某一列 ...
想要删除某一行或一列,可以用 .drop() 函数。在使用这个函数的时候,你需要先指定具体的删除方向,axis=0 对应的是行 row,而 axis=1 对应的是列 column 。 删除'Birth_year' 列: 删除'd' 行: 请务必记住,除非用户明确指定,否则在调用 .drop() 的时候,Pandas 并不会真的永久性地删除这行/列。这主要是...
pd.concat((df1,df2),axis=1,join='outer') 1.3 使用df.append()函数添加 由于在后面级联的使用非常普遍,因此有一个函数append专门用于在后面添加 2. 使用pd.merge()合并 merge与concat的区别在于,merge需要依据某一共同的列来进行合并 使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进...