数据类型变换之object、category、bool、int32、int64、float64以及数据类型标准化 知识点 1、category类型与object类型 输出结果 实现代码 数据类型变换之object、category、bool、int32、int64、float64以及数据类型标准化 知识点 在pa...
int_col int64 float_col int32 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object 但是当某一列的数据类型不止一个的时候,转换的过程当中则会报错,例如“mix_col”这一列 df['mix_col'] = df['mix_col'].astype('int') output ValueError: invalid l...
int_col int64 float_col int32 mix_col object missing_col float64 money_col object boolean_col bool custom object dtype: object 但是当某一列的数据类型不止一个的时候,转换的过程当中则会报错,例如“mix_col”这一列 df['mix_col'] = df['mix_col'].astype('int') output ValueError: invalid l...
include:列表,想要留下的数据类型,比如float64,int64,bool,object等 exclude:列表,需要排除的数据类型,同上。 代码语言:javascript 复制 df=pd.DataFrame({'a':[1,2]*3,'b':[True,False]*3,'c':[1.0,2.0]*3,'d':['a','b']*3})# 筛选float和int的数值类型变量 num_list=df.select_dtypes(includ...
简介:Python之pandas:数据类型变换之object、category、bool、int32、int64、float64以及数据类型标准化之详细攻略 知识点 在pandas中,如果某个字段下,数据类型不一致导致整个字段类型不相同,可以进行字段类型转换!,在pandas中,进行数据类型转换非常简单,只需要使用astype函数即可!
numpy.integer int8, int16, int32, int64 numpy.unsignedinteger uint8, uint16, uint32, uint64 numpy.object_ object_ numpy.bool_ bool_ numpy.character bytes_, str_ 相比之下,R 语言只有少数几种内置数据类型:integer、numeric(浮点数)、character和boolean。NA类型是通过为每种类型保留特殊的位模式来实...
###按照惯例导入两个常用的数据处理的包,numpy与pandasimportnumpyasnpimportpandasaspd# 从csv文件读取数据,数据表格中只有5行,里面包含了float,string,int三种数据python类型,也就是分别对应的pandas的float64,object,int64# csv文件中共有六列,第一列是表头,其余是数据。df = pd.read_csv("sales_data_types.cs...
可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符串类型。 那么,我们可以在加载数据的时候通过参数dtype指定各字段数据类型。 代码语言:javascript ...
int32 Customer Name object 2016 object 2017 object Percent Growth object Jan Units object Month int64 Day int64 Year int64 Active object dtype: object # 通过赋值在原始的数据框基础上进行了数据转化,可以重新看一下我们新生成的数据框 print(df) Customer Number Customer Name 2016 2017 \ 0 10002 ...
dtype: object 可以看到国家字段是object类型,受欢迎度是int整数类型,评分与向往度都是float浮点数类型。而实际上,对于向往度我们可能需要的是int整数类型,国家字段是string字符串类型。 那么,我们可以在加载数据的时候通过参数dtype指定各字段数据类型。 import pandas as pddf =...