data = [(1,2,3),(4,5,6),(7,8,9),(10,11,12)] df = pd.DataFrame(data, index=('row1','row2','row3','row4'),columns=('col1', 'col2', 'col3')) df.loc["Row_Total"] = df.sum() df.loc[:,"Column_Total"] = df.sum(axis=1) 2、如果有文字 import pandas as pd...
DataFrame(mydata) df # 输出 Column1 Column2 0 1 a 1 2 b 2 3 c 指定行索引: # 指定行索引 df.index = ['row1', 'row2', 'row3'] df # 输出 Column1 Column2 row1 1 a row2 2 b row3 3 c 使用另一个 Series 或数组作为索引: # 使用另一个 Series 或数组作为索引 index_series ...
索引的选择主要是基于标签的选择和基于位置的选择,对于索引来说,位置序号默认从0开始,到length(index)-1 结束。 对于数据框而言,如果没有填写row_indexer 或 column_indexer,那么表示所有的row或column。在row_indexer和column_indexer中,可以使用连续的标签,比方说,0:4,表示从0到4的一个range,即0、1、2、3,...
索引的选择主要是基于标签的选择和基于位置的选择,对于索引来说,位置序号默认从0开始,到length(index)-1 结束。 对于数据框而言,如果没有填写row_indexer 或 column_indexer,那么表示所有的row或column。在row_indexer和column_indexer中,可以使用连续的标签,比方说,0:4,表示从0到4的一个range,即0、1、2、3,...
[10,30,20],index=['a','c','b']) print(df)# 增加列后进行显示,其中 index 用于对应到该列 元素 位置(所以位置可以不由 列表 中的顺序进行指定)print("Adding a new column using the existing columns in DataFrame:") df['four']=df['one']+df['two']+df['three'] print(df)# 我们选定...
iterrows(): 按行遍历,将DataFrame的每一行转化为(index, Series)对。index为行索引值,Series为该行对应的数据。 for index,row_data in df.iterrows(): print(index,row_data) iteritems():按列遍历,将DataFrame的每一列转化为(column, Series)对。column为列索引的值,Series为该列对应的数据。 for col,...
1、索引排序df.sort_index() s.sort_index()# 升序排列df.sort_index()# df也是按索引进行排序df.team.sort_index()s.sort_index(ascending=False)# 降序排列s.sort_index(inplace=True)# 排序后生效,改变原数据# 索引重新0-(n-1)排,很有用,可以得到它的排序号s...
索引的设置_`set_index` 索引的重置_`reset_index` 4. 索引的变形_reindex/reindex_like 四、索引运算 1. 集合的运算法则 2. 一般的索引运算 五、练习 Ex1:公司员工数据集 一、索引器 1.表的列索引 _DataFrame[列名组成的列表] df = pd.read_csv('../data/learn_pandas.csv', usecols = ['School',...
Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] 基础知识 如在上一节介绍数据结构时提到的,使用[](即__getitem__,对于熟悉在 Python 中实现类行为的人)进行索引的主要功能是选择较低维度的切片。以下表格显示了使用[]索引pandas 对象时的返回类型值: 对象类型 选择 返回值类型 Series seri...
Same index as caller. See Also --- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes -