import pandas as pd # 创建一个示例数据帧 data = {'Name': ['Tom', 'Nick', 'John'], 'Age': [28, 32, 25], 'City': ['New York', 'Paris', 'London']} df = pd.DataFrame(data) # 获取行号 row_numbers = df.index.tolist() print("行
pandas.DataFrame(data=None,index=None,columns=None,dtype=None,copy=False) 参数说明: data:DataFrame 的数据部分,可以是字典、二维数组、Series、DataFrame 或其他可转换为 DataFrame 的对象。如果不提供此参数,则创建一个空的 DataFrame。 index:DataFrame 的行索引,用于标识每行数据。可以是列表、数组、索引对象等...
现在来看最上面的DataFrame,需要使用 reset_index 方法可以看下reset的level参数:12 level : int, str, tuple, or list, default NoneOnly remove the given levels from the index. Removes all levels by default该对象包含两个索引[key1, key1],要移除索引放到列上时,就需要指定索引: 0(key1), 1(key2...
而这个名字在Pandas中没有被充分使用。一旦在索引中包含了列,就不能再使用方便的df.column_name符号了,而必须恢复到不太容易阅读的df.index或者更通用的df.loc[]。有了MultiIndex。df.merge--可以用名字指定要合并的列,不管这个列是否属于索引。 按值查找元素 考虑以下Series对象: 索引提供了一种快速而方便的方法...
mapper,index,columns:可以任选其一使用,可以是将index和columns结合使用。index和column直接传入mapper或者字典的形式。 axis:int或str,与mapper配合使用。可以是轴名称(‘index’,‘columns’)或数字(0,1)。默认为’index’。 copy:boolean,默认为True,是否复制基础数据。
df.iloc[row_index, column_index] # 通过标签或位置选择数据 df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter(regex='regex') # 随机选择 n 行数据 df.sample(n=5)数据...
# Quick examples of rename column by index # Example 1: Assign column name by index df.columns.values[1] = 'Courses_Fee' print(df.columns) # Example 2: Rename column name by index df.rename(columns={df.columns[2]: 'Courses_Duration'},inplace=True) ...
df.columns = ['a','b','c'] # 只是简单的把列明替换成abc,实际内容并没有变化 要想实现类似reindex的效果,需要用df=df[['c','b','a']] 4)index注意事项 excel第一列最上面单元格如果为空,read_excel后第一列会成为index 如果是读取该df中的sereis,请注意index会变成1,2,3,4,5…....
s=pd.Index([' A','A ',' A ','A'],dtype='string') 全部去除strip() s.str.strip() 全部去除s 索引上的字符串方法对于处理或转换DataFrame列特别有用。例如,可能有带有前导或尾随空格的列 df = pd.DataFrame( np.random.randn(3, 2), columns=[" Column A ", " Column B "], ...
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis']) mapping = {'a':'red', 'b':'red', 'c':'blue', 'd':'blue', 'e':'red', 'f':'orange'} by_column = people.groupby(mapping, axis=1) by_column.sum() 公众号 程序员阿狗 关于数据分析和Python的经验分享 内容来自百家号 查看...