3.2 结合GroupBy的Count Unique操作 Count Unique操作经常与GroupBy一起使用,以计算每个组中唯一值的数量: importpandasaspd# 创建示例数据框df=pd.DataFrame({'Category':['A','B','A','B','A','C','B','C'],'SubCategory':['X','Y','X','Z','Y','Z','Y','X'],'Value':[1,2,1,3...
这个例子展示了如何使用nunique()方法计算’name’列中唯一值的数量。 3.2 多列Unique Count importpandasaspd# 创建示例数据data={'name':['Alice','Bob','Charlie','Alice','Bob','Alice'],'city':['New York','London','Paris','New York','London','Paris'],'category':['A','B','A','B'...
In [1]: import numba In [2]: def double_every_value_nonumba(x): return x * 2 In [3]: @numba.vectorize def double_every_value_withnumba(x): return x * 2 # 不带numba的自定义函数: 797 us In [4]: %timeit df["col1_doubled"] = df["a"].apply(double_every_value_nonumba) ...
unique().tolist()]) ## 画出 y 轴 linechart.add_yaxis('产品销售额', [int(x) for x in df.groupby(df.index.month)['销售额'].sum().tolist()]) linechart.render_notebook() 画图结束之后,我们验证一下图中的数据。 df.groupby([df.index.month])['销售额'].sum() date 1 ...
groupby(mapping, axis = 1)print(by_column.sum()) 1. 2. 3. 4. 5. 6. –> 输出的结果为:(要想分组之后产生我们需要的数据,需要添加一些方法,比如这里的.sum()汇总) 0 0 1 2 31 4 5 6 72 8 9 10 113 12 13 14 15 one two0 1 51 9 132 17 213 25 29 1. 2...
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。 如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。 在本文中,我们将使用25个示例来详细介绍groupby函数的用法。这25个示例中还...
经过groupby后会生成一个groupby对象,该对象本身不会返回任何东西,只有当相应的方法被调用才会起作用。例如取出某一个组: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 grouped_single.get_group('S_1').head() b). 根据某几列分组 代码语言:javascript ...
因此,在没有进行调用get_group(),也就是没有取出特定某一组数据之前,此时的数据结构任然是DataFrameGroupBy,其中也有很多函数和方法可以调用, 如max()、count()、std()等,返回的结果是一个DataFrame对象。 调用get_group()函数后得到了Series的对象,下面的操作就可以按照Series对象中的函数行了。
display(r2)# 对象值,二维ndarray数组r3 = df.values.copy()print('属性值:') display(r3) describe/info - 查看数据信息 - 重要 # 查看其属性、概览和统计信息importnumpyasnpimportpandasaspd# 创建 shape(150,3)的二维标签数组结构DataFramedf = pd.DataFrame(data = np.random.randint(0,151,size = (...
pandas groupby 计算unique值,其中第一个Para['uniCount'], 运行为nan, 2 成功了,写法都一样 帮忙看下哪里错了, 或者换种写法? 1.para['uniCount'] = dfpartable.groupby('Par', as_index=True).apply(lambda x: x.Value.nunique()) 2.paraStep['uniCount'] = dfpartable.groupby(['Par','Step'...