count函数经常与groupby一起使用,用于计算每个组中的记录数: importpandasaspd# 创建示例数据data={'category':['A','B','A','B','A','B','A'],'value':[1,2,3,4,5,6,7]}df=pd.DataFrame(data)# 计算每个类别的记录数category_counts=df.groupby('category').count()print(category_counts) P...
从0.20.1开始,pandas引入了agg函数,它提供基于列的聚合操作。而groupby可以看做是基于行,或者说index的聚合操作。 从实现上看,groupby返回的是一个DataFrameGroupBy结构,这个结构必须调用聚合函数(如sum)之后,才会得到结构为Series的数据结果。 而agg是DataFrame的直接方法,返回的也是一个DataFrame。当然,很多功能用sum、...
importpandasaspd# 创建示例数据框df=pd.DataFrame({'Category':['A','B','A','B','A','C','B','C'],'Value':[1,2,1,3,2,3,2,4]})# 计算Value列中唯一值的数量unique_count=df['Value'].nunique()print("pandasdataframe.com - 唯一值数量:")print(unique_count) Python Copy Output: ...
如果说前面的三个函数主要适用于pandas中的一维数据结构series的话(nunique也可用于dataframe),那么接下来的这两个函数则是应用于二维dataframe。 04 groupby groupby,顾名思义,是用于实现分组聚合统计的函数,与SQL中的group by逻辑类似。例如想统计前面成绩表中各门课的平均分,语句如下: 当然,groupby的强大之处在于,...
gb = df.groupby("key1") gb.<TAB>#(输入gb.后按Tab键,可以看到以下提示:)gb.agg gb.boxplot gb.cummin gb.describe gb.filtergb.get_group gb.height gb.last gb.median gb.ngroups gb.plot gb.rank gb.std gb.transform gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups ...
count() 统计列表中非空手机开的个数 nunique() 统计非重复的数据个数 sum() 统计列表中所有数值的和 mean() 计算列表中数据的平均值 median() 统计列表中数据中位数 max() 求列表中数据的最大值 min() 求列表中数据的最小值 对分组后的数据进行统计 agg() ...
groupby('team').agg({'Q1': [sum, 'std', max], # 使用三个方法 'Q2': 'count', # 总数 'Q3':'mean', # 平均 'Q4': max}) # 最大值 3、Series应用分组 根据groupby的语法,如果给by参数传入一个Series,此Series与被分组数据的索引对齐后,按Series的值进行分组。
如果说前面的三个函数主要适用于pandas中的一维数据结构series的话(nunique也可用于dataframe),那么接下来的这两个函数则是应用于二维dataframe。 04 groupby groupby,顾名思义,是用于实现分组聚合统计的函数,与SQL中的group by逻辑类似。例如想统计前面成绩表中各门课的平均分,语句如下: ...
count:计算分组中非NA值的数量 size:计算分组的大小 std和 var:计算分组的标准差和方差 describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:计算分组的累积和、最小值、最大值、累积乘积 ...
在Pandas中,聚合是指将数据按照某些条件进行分组,并对每个组的数据进行汇总计算的过程。聚合操作可以帮助我们快速计算数据的总体统计量或生成摘要信息。groupby() 方法用于按照指定的列或多个列对数据进行分组。它将数据分成多个组,并返回一个 GroupBy 对象,我们可以在该对象上应用聚合操作。agg() 方法则用于对分组...