3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。 其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,当变量为1个时传入名称字符串即可。 当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到...
'age':[25,30,35,28,32],'city':['New York','London','Paris','Tokyo','London'],'salary':[50000,60000,70000,55000,65000]})# 使用agg函数计算多个统计量stats=df.groupby('city').agg({'age':['mean','max'],'salary':['mean','min','max']})print("Statistics by city:",stats)...
'salary':[6000,8000,7000,9000],'experience':[3,5,4,6]}df=pd.DataFrame(data)# 按部门分组并计算薪水总和和经验最大值multi_agg_result=df.groupby('department').agg({'salary':'sum','experience':'max'})print("按部门分组并计算薪水总和和经验最大值:")print(multi_agg_result)...
data.groupby(['year','gender']).agg({'count':['min','max','median']}).reset_index(drop=False) 可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字: data.g...
groupby() 方法用于按照指定的列或多个列对数据进行分组。它将数据分成多个组,并返回一个 GroupBy 对象,我们可以在该对象上应用聚合操作。agg() 方法则用于对分组后的数据进行聚合计算。下面简单介绍这两个方法的参数:groupby()方法:groupby()方法用于按照指定的列或多个列对数据进行分组。参数:by:指定分组的...
pandas提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁,本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧(本文使用到的...
gb = df.groupby("key1") gb.<TAB>#(输入gb.后按Tab键,可以看到以下提示:)gb.agg gb.boxplot gb.cummin gb.describe gb.filtergb.get_group gb.height gb.last gb.median gb.ngroups gb.plot gb.rank gb.std gb.transform gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups ...
在这个例子中,我们首先创建了一个包含姓名、年龄、城市和工资信息的DataFrame。然后,我们使用groupby('name')按姓名分组,并使用agg函数计算每个人的平均年龄和工资。 1.2 多列分组 我们也可以按多个列进行分组: importpandasaspd# 创建示例数据data={'name':['Alice','Bob','Charlie','David','Alice','Bob'],...
本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。 二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。
问pandas中groupby和agg并行的一种有效方法ENPandas怎样实现groupby分组统计 groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数 import pandas as pd import numpy as np %matplotlib inline df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], ...