importpandasaspd# 创建示例数据data={'category':['A','B','A','B','A'],'subcategory':['X','X','Y','Y','X'],'sales':[100,200,150,300,120]}df=pd.DataFrame(data)# 使用sum()计算每个类别的总销售额result=df.groupby('category')['sales'
拆分:groupby,按照某个属性column分组,得到的是一个分组之后的对象 应用:对上面的对象使用某个函数,可以是自带的也可以是自己写的函数,通过apply(function) 合并:最终结果是个S型数据 pandas分组和聚合详解 官方文档 DataFrame.``groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_...
可以看出name就是groupby中的key1的值,group就是要输出的内容。 同理: for (k1,k2),group in df.groupby(['key1','key2']): print ('===k1,k2:') print (k1,k2) print ('===k3:') print (group) 1 2 3 4 5 对group by后的内容进行操作,如转换成字典 piece=dict(list(df.groupby('key...
In [1]: data = pd.Series(range(1000000)) In [2]: roll = data.rolling(10) In [3]: def f(x): ...: return np.sum(x) + 5 # 第一次运行Numba时,编译时间会影响性能 In [4]: %timeit -r 1 -n 1 roll.apply(f, engine='numba', raw=True) 1.23 s ± 0 ns per loop (mean ...
1...导入 Pandas 库在使用 Pandas 之前,首先导入 Pandas 库: import pandas as pd 3...数据聚合 5.1 常用聚合函数 Pandas 提供了丰富的聚合函数,如 sum、mean、count 等: # 对分组后的数据进行求和 sum_result = grouped['target_column...多个聚合操作你可以同时应用多个聚合操作,得到一个包含多个统计结果...
GROUP BYColumn1, Column2 HAVINGCondition2 Pandas df[Condition1].groupby([Column1, Column2], as_index=False).agg({Column3: "mean", Column4: "sum"}).filter(Condition2) Group By: split - apply - combine GroupBy可以分解为三个步骤: ...
最重要的是,如果您100%确定列中没有缺失值,则使用df.column.values.sum()而不是df.column.sum()可以获得x3-x30的性能提升。在存在缺失值的情况下,Pandas的速度相当不错,甚至在巨大的数组(超过10个同质元素)方面优于NumPy。 第二部分. Series 和 Index Series是NumPy中的一维数组,是表示其列的DataFrame的基本组...
by_column=people.groupby(mapping,axis=1) by_column.sum() 1 2 3 4 5 如果不加axis=1, 则只会出现 a b c d e Series 也一样 map_series=pd.Series(mapping) map_series a red b red c blue d blue e red f orange dtype: object ...
GROUP BY Column1, Column2 HAVING Condition2 Pandas df [Condition1].groupby([Column1, Column2], as_index=False).agg({Column3: "mean", Column4: "sum"}).filter(Condition2) Group By: split - apply - combine GroupBy可以分解为三个步骤: ...
print(df.groupby("Sex").agg({"Survived":np.sum,"Age":np.mean,"Fare":np.mean})) #4.2 多个列的聚合 sql=""" SELECT --不同存活和性别分组的,平均年龄 mean(Age) --不同存活和性别分组的,平均票价 mean(Fare) From titanic group by Survived,Sex ...