In [20]: ts2["id"] = pd.to_numeric(ts2["id"], downcast="unsigned") In [21]: ts2[["x", "y"]] = ts2[["x", "y"]].apply(pd.to_numeric, downcast="float") In [22]: ts2.dtypes Out[22]: id uint16 name category x float32 y float32 dtype: object 代码语言:javascrip...
复制 In [1]: dates = pd.date_range('1/1/2000', periods=8) In [2]: df = pd.DataFrame(np.random.randn(8, 4), ...: index=dates, columns=['A', 'B', 'C', 'D']) ...: In [3]: df Out[3]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1...
import numpy as np import matplotlib.path as mpath # 数据准备 species = df['species'].unique() data = [] # 只选择数值列(排除 species 列) numeric_columns = df.columns[:-1] for s in species: data.append(df[df['species'] == s][numeric_columns].mean().values) # 将 data 列表转换...
# Convert data type of Order Date column to datedf["Order Date"] = pd.to_datetime(df["Order Date"])to_numeric()可以将列转换为数字数据类型(例如,整数或浮点数)。# Convert data type of Order Quantity column to numeric data typedf["Order Quantity"] = pd.to_numeric(df["Order Quantity"]...
['int']) converted_int = gl_int.apply(pd.to_numeric,downcast='unsigned') print(mem_usage(gl_int)) print(mem_usage(converted_int)) compare_ints = pd.concat([gl_int.dtypes,converted_int.dtypes],axis=1) compare_ints.columns = ['before','after'] compare_ints.apply(pd.Series.value_...
将JSON 格式转换成默认的Pandas DataFrame格式orient:string,Indicationofexpected JSONstringformat.写="records"'split': dict like {index -> [index], columns -> [columns], data -> [values]}'records': list like [{column -> value}, ..., {column -> value}]'index': dict like {index -> ...
相比之下,R 语言只有少数几种内置数据类型:integer、numeric(浮点数)、character和boolean。NA类型是通过为每种类型保留特殊的位模式来实现的,用作缺失值。虽然在整个 NumPy 类型层次结构中执行此操作是可能的,但这将是一个更重大的权衡(特别是对于 8 位和 16 位数据类型),并且需要更多的实现工作。 但是,R 的NA...
df.columns=df.columns.str.upper() print(df) 2.字符串常用方法 # 字符串常用方法(1) -lower,upper,len,startswith,endswith s= pd.Series(['A','b','bbhello','123',np.nan]) print(s.str.lower(),'→ lower小写\n') print(s.str.upper(),'→ upper大写\n') ...
在使用 DataFrame 的过程中,经常会遇到修改列名,索引名等情况。使用 rename 轻松可以实现。修改列名只需要设置参数 columns 即可。 将钢铁侠和索尔的身高改为170 生成一列字符串格式的身高列 更改索引列名称 修改列标签,将年龄改为age,城市改为city,性别改为sex ...
You can get unique values in column/multiple columns from pandas DataFrame using unique() or Series.unique() functions. unique() from Series is used to