series是带标签的一维数组,所以还可以看做是类字典结构:标签是key,取值是value;而dataframe则可以看做是嵌套字典结构,其中列名是key,每一列的series是value。所以从这个角度讲,pandas数据创建的一种灵活方式就是通过字典或者嵌套字典,同时也自然衍生出了适用于series和dataframe的类似字典访问的接口,即通过loc索引访问。
index, colums 新的行列自定义索引 fill_value 在重新索引,用于填充缺失位置的值 method 填充方法,ffill当前值向前填充, bfill向后填充 limit 最大填充量 copy 默认为True,生成新的对象,False时,新旧相等,但不复制 d.reindex(index = [‘d’, ‘c’, ‘b’, ‘a’ ]) d.reindex(colums = [‘two’, ...
sr2 = pd.Series([11,20,10], index=['d','c','a',]) sr1+sr2 sr3 = pd.Series([11,20,10,14], index=['d','c','a','b']) sr1+sr3 如何在两个Series对象相加时将缺失值设为0? sr1.add(sr2, fill_value=0) 灵活的算术方法:add, sub, div, mul 缺失数据:使用NaN(Not a Number)...
import pandas as pd def cat_process(df, cat_dict): ''' 该函数用于对类别型指标进行值的替换,其中: df : dataframe,传入待处理的dateframe,必须包括待替换的指标列 cat_dict: dict类型,key代表待替换的指标名称,value代表用于替换的一一对应的值的关系词典 关系词典中必须包含“其他”和"NULL"两个key。
'mean')# 7.16 输出语文成绩最高的男生和女生(groupby默认会去掉空值)def get_max(g):df = g.sort_values('语文',ascending=True)print(df)return df.iloc[-1,:]df2.groupby('性别').apply(get_max)# 7.17 按列省份、城市进行分组,计算语文、数学、英语成绩最大值的透视表df.pivot_table(index=...
Pandas 的最新版本添加了RangeIndex作为Int64Index的优化。 它具有表示基于整数的索引的能力,该索引从特定的整数值开始,具有结束的整数值,并且还可以指定步骤。 使用开始,停止和步进是一种常见的模式,因此需要向 Pandas 添加自己的子类。 通过使用这三个值,可以节省内存,并且执行时间与Int64Index中的顺序相同。 RangeInd...
value_counts方法 pandas.DataFrame按照某几列分组并统计:groupby+count pandas.DataFrame按照某列分组并求和 pandas.DataFrame按照某列分组并取出某个小组:groupby+get_group pandas.DataFrame排序 pandas.DataFrame按照行标签或者列标签排序:sort_index方法 pandas.DataFrame按照某列值排序:sort_values方法by参数 pandas....
name.value_counts() ## 快速画出横向的条形图。pandas 开发者推荐使用 sns.barplot(x=name_counts.value, y=name_counts.index) 更完整的画法 (seaborn) : ax=plt.figure(figsize=(30, 10)).add_subplot(111) sns.barplot(x=vc.index, y=vc.values) ax.set_xlim([0, 60]) ax.set_xlabel('Age'...
[label] 1236 # Similar to Index.get_value, but we do not fall back to positional -> 1237 loc = self.index.get_loc(label) 1239 if is_integer(loc): 1240 return self._values[loc] File ~/work/pandas/pandas/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key) 3807 if ...
df.to_excel("path_to_file.xlsx", index_label="label", merge_cells=False)• 1 为了将单独的DataFrame写入单个 Excel 文件的不同工作表中,可以传递一个ExcelWriter。 with pd.ExcelWriter("path_to_file.xlsx") as writer:df1.to_excel(writer, sheet_name="Sheet1")df2.to_excel(writer, sheet_...