df.filter(items=['Q1', 'Q2']) # 选择两列df.filter(regex='Q', axis=1) # 列名包含Q的列df.filter(regex='e$', axis=1) # 以e结尾的列df.filter(regex='1$', axis=0) # 正则,索引名以1结尾df.filter(like='2', axis=0) # 索引中有2的# 索引...
import polars as pl import time # 读取 CSV 文件 start = time.time() df_pl = pl.read_csv('test_data.csv') load_time_pl = time.time() - start # 过滤操作 start = time.time() filtered_pl = df_pl.filter(pl.col('value1') > 50) filter_time_pl = time.time() - start # 分组...
df.filter(regex='Q', axis=1) # 列名包含Q的列 df.filter(regex='e$', axis=1) # 以e结尾的列 df.filter(regex='1$', axis=0) # 正则,索引名以1结尾 df.filter(like='2', axis=0) # 索引中有2的 # 索引中以2开头、列名有Q的 df.filter(regex='^2',axis=0).filter(like='Q', ax...
1. fill_value 使用add,sub,div,mul的同时,通过fill_value指定填充值,未对齐的数据将和填充值做运算 示例代码: print(s1) print(s2) s1.add(s2, fill_value = -1) print(df1) print(df2) df1.sub(df2, fill_value = 2.) 运行结果: # print(s1) 0 10 1 11 2 12 3 13 4 14 5 15 6 16 ...
您可以通过在第一次append中传递expectedrows=<int>来设置PyTables预期的总行数。这将优化读/写性能。 可以将重复行写入表中,但在选择时会被过滤掉(选择最后的项目;因此表在主要、次要对上是唯一的) 如果您尝试存储将由 PyTables 进行 pickle 处理的类型(而不是作为固有类型存储),将会引发PerformanceWarning。
.filter(pl.col("Category").is_in(["A","B"])) ) 如果表达式是 Eager 执行,则会多余地对整个 DataFrame 执行 groupby 运算,然后按 Category 筛选。 通过惰性执行,DataFrame 会先经过筛选,并仅对所需数据执行 groupby。 4)表达性 API 最后,Polars 拥有一个极具表达性的 API,基本上你想执行的任何运算都...
现在我们将实现一个分布式的pandas.Series.value_counts()。这个工作流程的峰值内存使用量是最大块的内存,再加上一个小系列存储到目前为止的唯一值计数。只要每个单独的文件都适合内存,这将适用于任意大小的数据集。 代码语言:javascript 代码运行次数:0 运行 复制 In [32]: %%time ...: files = pathlib.Path...
'A.*':It will filter all the records which starts with the letter'A'. As theregexis defined, we have to use the following piece of code for filtering DataFrame rows: dataframe.column_name.str.match(regex) Note To work with pandas, we need to importpandaspackage first, below is the sy...
Alternatively, you can alsoaxis=0onDataFrame.filter()function to filter rows by non-numeric value indexes that contain a specific character. The below example filters rows by index'Inx_B‘, and'Inx_BB'. # Pandas filter() by Non-numeric two indexes ...
Selected rows where country of originequals'UK' Is null To filter the dataframe where a column value isNULL, use.isnull() importpandasaspdimportnumpyasnp df = pd.DataFrame({'name':['john','david','anna'],'country':['USA','UK',np.nan] ...