# create a dataframedframe = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['India', 'USA', 'China', 'Russia'])#compute a formatted string from each floating point value in framechangefn = lambda x: '%.2f' % x# Make...
, columns=boston.feature_names) 1. [] 第一种是最快捷方便的,直接在dataframe的[]中写筛选的条件或者组合条件。...loc按标签值(列名和行索引取值)访问,iloc按数字索引访问,均支持单值访问或切片查询。除了可以像[]按条件筛选数据以外,loc还可以指定返回的列变量,从行和列两个维度筛选。...=True:rege...
df.filter(items=['Q1', 'Q2']) # 选择两列df.filter(regex='Q', axis=1) # 列名包含Q的列df.filter(regex='e$', axis=1) # 以e结尾的列df.filter(regex='1$', axis=0) # 正则,索引名以1结尾df.filter(like='2', axis=0) # 索引中有2的# 索引...
import polars as pl import time # 读取 CSV 文件 start = time.time() df_pl = pl.read_csv('test_data.csv') load_time_pl = time.time() - start # 过滤操作 start = time.time() filtered_pl = df_pl.filter(pl.col('value1') > 50) filter_time_pl = time.time() - start # 分组...
df1.insert(loc = 1, # 插入位置,插入为列索引为1的位置 column='C++', # 插入一列,这一列名字 value = np.random.randint(0,151,size = 10)) # 插入的值 insert只能插入列,不能插入行,插入行用append dfn = pd.DataFrame(np.random.randint(0,151,size = (1,4)),columns=['Python','C++',...
如果我们测量这两个调用的内存使用情况,我们会发现在这种情况下指定columns使用的内存约为 1/10。 使用pandas.read_csv(),您可以指定usecols来限制读入内存的列。并非所有可以被 pandas 读取的文件格式都提供了读取子集列的选项。 使用高效的数据类型 默认的 pandas 数据类型不是最节省内存的。对于具有相对少量唯一值...
筛选列score s并比较0.8,然后设置缺少的值(如果匹配),最后删除只有缺少值的行: #ordering both columnsL1 = ['top1','top2','top3']L2 = ['score1','score2','score3']#alternative if same orderingL1 = df.filter(like='top').columns.tolist()L2 = df.filter(like='score').columns.tolist(...
value_vars的时候, 会将除了id_vars指定的字段之外的其它所有字段都进行列转行# 所以在省略value_vars的时候, 务必注意id_vars, 假设这里要列转行的列很多, 不想一个一个写, 但是id_vars又不想指定"姓名"# 那么可以在列转行之前就将"姓名"这一列删掉即可, 也就是把上面的df换成df.drop(columns=["姓名"]...
我想创建一个函数来返回一个数据帧,这个数据框是经过筛选的数据帧,只包含由我的列表good_columns指定的列。 def filter_by_columns(data,columns): data = data[[good_columns]] #this is running an error when calling for my next line for: filter_data = fileter_by_columns(data, good_columns) ...
})# another one to perform the filterdf[df['country']=='USA'] 但是您可以在一个步骤中定义数据帧并对其进行查询(内存会立即释放,因为您没有创建任何临时变量) # this is equivalent to the code above# and uses no intermediate variablespd.DataFrame({'name':['john','david','anna'],'country':...