df.filter(items=[column_name1, column_name2]) 选择指定的列; df.filter(regex='regex') 选择列名匹配正则表达式的列; df.sample(n) 随机选择 n 行数据。实例 # 选择指定的列 df['column_name'] # 通过标签选择数据 df.loc[row_index, column_name] # 通过位置选择数据 df.iloc[row_index, column...
1. Filter 例子1: 篩選奇數 1.用匿名函數及filter的使用 list1=[1,2,3,4,5,6]list(filter(lambdax:x%2==1,list1)) 2.用def function 及filter的使用 def function(x): return x % 2 == 1 list1 = [1, 2, 3, 4, 5, 6] b = filter(function, list1) list(b) 3.用list compression...
"""filter by multiple conditions in a dataframe df parentheses!""" df[(df['gender'] == 'M') & (df['cc_iso'] == 'US')] 过滤条件在行记录 代码语言:python 代码运行次数:0 运行 AI代码解释 """filter by conditions and the condition on row labels(index)""" df[(df.a > 0) & (df...
首先使用Polars CPU对数据集进行读取、过滤、分组聚合等处理。 import polars as pl import time # 读取 CSV 文件 start = time.time() df_pl = pl.read_csv('test_data.csv') load_time_pl = time.time() - start # 过滤操作 start = time.time() filtered_pl = df_pl.filter(pl.col('value1'...
在性能方面,Polars的数值filter速度要快2-5倍,而Pandas需要编写的代码更少。Pandas在处理字符串(分类特征)时速度较慢,这个我们在以前的文章中已经提到过,并且使用df.query函数在语法上更简洁,并且在大数据量的情况下会更快,这个如果有人有兴趣,我们再单独总结。分组操作 分组操作是机器学习中用于创建聚合特征的...
大家好,我是 Lemon,今天来跟大家分享下 pandas 中 groupby 的用法。 Pandas 的groupby()功能很强大,用好了可以方便的解决很多问题,在数据处理以及日常工作中经常能施展拳脚。 今天,我们一起来领略下groupby()的魅力吧。 首先,引入相关 package : 代码语言:javascript ...
filter() Filter the DataFrame according to the specified filter first() Returns the first rows of a specified date selection floordiv() Divides the values of a DataFrame with the specified value(s), and floor the values ge() Returns True for values greater than, or equal to the specified ...
DataFrame.filter([items, like, regex, axis])过滤特定的子数据框 DataFrame.first(offset)Convenience method for subsetting initial periods of time series data based on a date offset. DataFrame.head([n])返回前n行 DataFrame.idxmax([axis, skipna])Return index of first occurrence of maximum over re...
注意,这里讨论的apply,agg,transform,filter方法都是限制在pandas.core.groupby.DataFrameGroupBy里面,不能跟pandas.core.groupby.DataFrame混淆。 先导入需要用到的模块 importnumpyasnpimportpandasaspdimportsys, tracebackfromitertoolsimportchain Part 1: Groupby 详解 ...
asfreq slice_shift xs mad infer_objects rpow drop_duplicates mul cummax corr droplevel dtypes subtract rdiv filter multiply to_dict le dot aggregate pop rolling where interpolate head tail size iteritems rmul take iat to_hdf to_timestamp shift hist std sum at_time tz_localize axes swaplevel ...