axis:指定操作的轴方向,默认为列轴(axis=1)。示例使用:import pandas as pddata = {'A_x': [1, 2, 3],'B_x': ['foo', 'bar', 'baz'],'C_y': [True, False, True],'D_y': [1.5, 2.5, 3.5]}df = pd.DataFrame(data)# 按列名中包含"o"的模式选择列df_filter_like = df...
df.filter(regex='^2',axis=0).filter(like='Q', axis=1) 7、按数据类型查询 df.select_dtypes(include=['float64']) # 选择float64型数据df.select_dtypes(include='bool')df.select_dtypes(include=['number']) # 只取数字型df.select_dtypes(exclude=['int'...
df.filter(items=['Q1', 'Q2']) # 选择两列 df.filter(regex='Q', axis=1) # 列名包含Q的列 df.filter(regex='e$', axis=1) # 以e结尾的列 df.filter(regex='1$', axis=0) # 正则,索引名以1结尾 df.filter(like='2', axis=0) # 索引中有2的 # 索引中以2开头、列名有Q的 df.fil...
# Pandas filter and select train_pd[train_pd['cat_1']==1][nums].mean() 两个查询的结果如下: 在性能方面,Polars的数值filter速度要快2-5倍,而Pandas需要编写的代码更少。Pandas在处理字符串(分类特征)时速度较慢,这个我们在以前的文章中已经提到过,并且使用df.query函数在语法上更简洁,并且在大数据量...
Hint: use '&' or '|' to chain Expr together, not and/or. 不支持pandas的isin()函数 df.filter(pl.col("CGI") isin (["ID7ID11481"]) 报错 SyntaxError: invalid syntax 2、选择列 select我们使用该方法选择列。在该select方法中,我们可以指定列: ...
df = df.select(['A', 'C']) df = df.rename({‘A’: ‘ID’, ‘C’: ‘Total’}) df = df.filter(pl.col('A') > 2) df = df.groupby('A').agg({'C': 'sum'})这些Pandas函数都可以直接使用。创建新列:df = df.with_column(pl.col(‘Total’) / 2, ‘Half Total’)处理空值...
# Pandas filter and select train_pd[train_pd['num_8']<=10][cats].nunique() 1. 2. 3. 4. 5. 查询2:当cat_1 = 1时,计算所有数值列的平均值。 # Polars filter and select train_pl.filter(pl.col("cat_1") ==1).select(pl.col(nums).mean()) ...
Copydf.filter(regex='^h') 筛选行#相当于SQL中的where按行的顺序#前3行,df_data.head(3) 后3行,df_data.tail(3) 指定index, 选择行df.iloc[:3] 和head(3)的效果是一样的 选择列 df.iloc[:,:3] 选择前3列 单元格定位 df.iloc[0,1] 选择第1行第2列的单元格数值 选择区域,df.iloc[[:3...
参数selector定义了哪个表是选择器表(你可以从中进行查询)。参数dropna将从输入的DataFrame中删除行,以确保表同步。这意味着如果要写入的表中的一行完全由np.nan组成,那么该行将从所有表中删除。 如果dropna为False,用户需要负责同步表格。请记住,完全由np.Nan行组成的行不会被写入 HDFStore,因此如果选择调用dropna=...
与Pandas不同,Polars可以在.select()和.filter()中并行运行操作。 创建新列 在Polars中创建新列也与在Pandas中使用的方式有所不同。在Polars中,需要使用.with_column()或.with_columns()方法,具体取决于你要创建多少列。 复制 # Pandasdf_pd["new_col"]=df_pd["col"]*10# Polarsdf.with_columns([(pl....