在Pandas 0.23+中,我们可以使用新的Pandas.DataFrame.drop函数来轻松删除空列,只需提供axis=1, how='all', inplace=True参数即可。这是一种清洁和高效的处理大量数据的方法。
DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除...
drop columns pandas df.drop(columns=['B','C']) 5 0 从dataframe中删除列 #To delete the column without having to reassign dfdf.drop('column_name', axis=1, inplace=True) 4 0 在pandas中删除列 note: dfisyour dataframe df = df.drop('coloum_name',axis=1) ...
初始数据为: a b c d 0 2.0 kl 4.0 7.0 1 2.0 kl 6.0 9.0 2 NaN kl 5.0 NaN 3 5.0 NaN NaN 9.0 4 6.0 kl 6.0 8.0 columns= Index(['a', 'b', 'c', 'd'], dtype='object') index= RangeIndex(start=0, stop=5, step=1) values= [[2.0 'kl' 4.0 7.0] [2.0 'kl' 6.0 9.0] ...
pl_data = pl_data.select([ pl.col(col).apply(lambda s: apply_md5(s)) for col in pl_data.columns ]) 查看运行结果: 3. Modin测试 Modin特点: 使用DataFrame作为基本数据类型; Modin具有与 Pandas 相同的应用程序接口(API); Pandas 仍然只会利用一个内核,而 Modin 会使用所有的内核; 能处理1MB到1T...
除了简单情况外,很难预测它是否会返回视图或副本(它取决于数组的内存布局,关于这一点,pandas 不做任何保证),因此__setitem__是否会修改dfmi或立即被丢弃的临时对象。这就是SettingWithCopy警告您的内容! 注意 您可能想知道我们是否应该关注第一个示例中的loc属性。但是保证dfmi.loc是dfmi本身,并具有修改后的索引...
df.drop(columns = ['col1','col2'...]) df.pop('col_name') del df['col_name'] In the last section, we have shown the comparison of these functions. So stay tuned… Also, See: Drop duplicates in pandas DataFrame Drop columns with NA in pandas DataFrame ...
df = pd.read_excel("test.xlsx", dtype=str, keep_default_na='') df.drop(columns=['寄件地区'], inplace=True) 5、列表头改名(补充) 如下:将某列表头【到件地区】修改为【对方地区】 df = pd.read_excel("test.xlsx", dtype=str, keep_default_na='') df = df.rename(columns={'到件地区...
一、轴向上删除条目 通过drop方法,可以删除Series的一个元素,或者DataFrame的一行或一列。默认情况下,drop方法按行删除,且不会修改原数据,但指定axis=1则按列删除,指定inplace=True则修改原数据。 In [9]: s= pd.Series(np.arange(5),
Average memory usage for int columns: 1.12 MB Average memory usage for object columns: 9.53 MB 可以看出,78 个 object 列所使用的内存量最大。我们后面再具体谈这个问题。首先我们看看能否改进数值列的内存用量。 理解子类型(subtype) 正如我们前面简单提到的那样,pandas 内部将数值表示为 NumPy ndarrays,并将...