写在ExtonReady函数里面,并在表格成功渲染之后,可以添加判断是否隐藏或者显示某一列import pandas as pd...
drop:默认为False,不删除原来索引,如果为True,删除原来的索引值 reset_index(drop=False) # 重置索引,drop=False data.reset_index() 结果: # 重置索引,drop=True data.reset_index() 结果: (3)以某列值设置为新的索引 set_index(keys, drop=True) keys : 列索引名成或者列索引名称的列表 drop : bo...
DataFrame.drop_duplicates(subset=None,keep='first',inplace=False) 如subset=[‘A’,’B’]去A列和B列重复的数据 参数如下: subset : column label or sequence of labels, optional用来指定特定的列,默认所有列keep : {‘first’, ‘last’, False}, default ‘first’删除重复项并保留第一次出现的项in...
import pandas as pd def test(): # 读取Excel文件 df = pd.read_excel('测试数据.xlsx') # 插入列 df.insert(loc=2, column='爱好', value=None) # 保存修改后的DataFrame到新的Excel文件 df.to_excel('结果.xlsx', index=False) test() 3、插入多列 假设我需要在D列(班级)后面插入5列,表头名...
💡 提示:使用如下命令创建一个脏数据文件,df.fillna(df['年龄'].mean())按照平均年龄做缺失值填充,df.drop_duplicates()删除重复值数据。 评论 In [40]: #使用字典创建一个数据集 import pandas as pd df = pd.DataFrame({'用户ID':['1000','1001','1002','1003','1004','1004'], '姓名':['...
cleaned_df=(df_text.pipe(clean_text_column,column_to_clean='Description')# 将 df_text 作为第一个参数传递 # 可以在这里继续链接其他 Pandas 操作 #.assign(DescriptionLength=lambda x:x['Description'].str.len()))print(cleaned_df) 1.
Drop duplicates in pandas DataFrame Drop columns with NA in pandas DataFrame Table of contents The DataFrame.drop() function Drop single column Drop multiple columns Using drop with axis=’columns’ or axis=1 Drop column in place Drop column by suppressing errors ...
It’s crucial to specify whether to drop rows based on index labels or positions, utilizing appropriate parameters such aslabelsorindex. 1. Create a Sample DataFrame Let’s create a pandas DataFrame to explain how to remove the list of rows with examples, my DataFrame contains the column names...
print(val.reset_index().T.drop_duplicates().T) This helps us easily reset the index and drop duplicate columns from our data frame. The output of the code is below. index dat10 0 91 1 5 As shown, we have successfully eliminated the duplicate column nameddat2from our data frame. It ...
For this purpose, we are going to usepandas.DataFrame.drop_duplicates()method. This method is useful when there are more than 1 occurrence of a single element in a column. It will remove all the occurrences of that element except one. ...