DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默
drop()方法用于从数据框中删除指定的行或列。# Drop Order Region column# (axis=0 for rows and axis=1 for columns)df = df.drop('Order Region', axis=1)# Drop Order Region column without having to reassign df (using inplace=True)df.drop('Order Region', axis=1, inplace=True)# Drop by...
df.drop(df.columns[0:3], axis=1, inplace=True) # 删除前3列 df.drop(df.columns[[0, 2]], axis=1, inplace=True) # 删除第1第3列 2.3,通过各种筛选方法实现删除列 详见pandas“选择行单元格,选择行列“的笔记3,增加行3.1,loc,at,set_value想...
DataFrame.drop(labels=None, axis=1, columns=None, level=None, inplace=False, errors='raise') Parameters: labels: It takes a list of column labels to drop. axis: It specifies to drop columns or rows. set aaxisto1or ‘columns’ to drop columns. By default, it drops the rows from Data...
代码语言:javascript 代码运行次数:0 运行 AI代码解释 df.rename(columns={ 'category': 'category-size'}) 7、删除后出现的重复值: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df['city'].drop_duplicates() 8 、删除先出现的重复值: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df['...
drop()方法用于从数据框中删除指定的行或列。 # Drop Order Region column # (axis=0 for rows and axis=1 for columns) df = df.drop('Order Region', axis=1) # Drop Order Region column without having to reassign df (using inplace=True) df.drop('Order Region', axis=1, inplace=True) ...
df = pd.read_excel("test.xlsx", dtype=str, keep_default_na='') df.drop(columns=['寄件地区'], inplace=True) 5、列表头改名(补充) 如下:将某列表头【到件地区】修改为【对方地区】 df = pd.read_excel("test.xlsx", dtype=str, keep_default_na='') df = df.rename(columns={'到件地区...
missing_df = missing_df.rename(columns={'index':'col', 0:'missing_pct'}) missing_df = missing_df.sort_values('missing_pct',ascending=False).reset_index(drop=True) return missing_df missing_cal(df) 如果需要计算样本的缺失率分布,只要加上参数axis=1. 2.获取分组里最大值所在的行方法 分为...
drop用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False)参数说明: labels就是要删除的行列的名字,用列表给定 axis默认为0,指删除行,因此删除columns时要指定axis=1; index直接指定要删除的行 columns直接指定要删除的列 ...
from openpyxl import load_workbook # 加载工作簿 wb = load_workbook('data.xlsx') ws = wb.active # 将工作表数据转换为列表 data = [] for row in ws.iter_rows(values_only=True): data.append(row) # 转换为DataFrame df = pd.DataFrame(data[1:], columns=data[0]) # 处理数据 df['日期'...