DataFrame.drop(labels=None,axis=0,index=None,columns=None, inplace=False) 参数说明: labels 就是要删除的行列的名字,用列表给定 axis 默认为0,指删除行,因此删除columns时要指定axis=1; index 直接指定要删除的行 columns 直接指定要删除的列 inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除...
In [1]: import numba In [2]: def double_every_value_nonumba(x): return x * 2 In [3]: @numba.vectorize def double_every_value_withnumba(x): return x * 2 # 不带numba的自定义函数: 797 us In [4]: %timeit df["col1_doubled"] = df["a"].apply(double_every_value_nonumba) ...
df.rename(columns={ 'category': 'category-size'}) 7、删除后出现的重复值: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df['city'].drop_duplicates() 8 、删除先出现的重复值: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df['city'].drop_duplicates(keep='last') 9、数据替换:...
3、df.drop() 3.1 df.drop()参数详解 df.drop( labels=None, #要删除的行或列的标签名。list、str axis=0, #表示删除的是行还是列。行为0,列为1,默认为0。 index=None, #行索引 columns=None, #列索引 level=None, #删除标签的级别。对于MultiIndex而言的。一般只有一级。 inplace=False, #是有覆盖...
使用drop 方法删除 Series 的元素或 DataFrame 的某一行(列)。 DataFrame.drop(labels=None, axis=0, levels=None, inplace=False) d = [[1.0,2.2,3,4],[1,2,3,4],[7,8,9,0],[3,5,7,9]] df = pd.DataFrame(d, index=['a','b','c','d'], columns=['A','B','C','D'])prin...
#构件一个数据集df1=pd.DataFrame(np.arange(36).reshape(6,6),columns=list('ABCDEF')) '1.删除行数据'#下面两种删除方式是等价的,传入labels和axis 与只传入一个index 作用相同df2=df1.drop(labels=0,axis=0) df22=df1.drop(index=0) #删除多行数据df3=df1.drop(labels=[0,1,2],axis=0) ...
DataFrame.drop(labels=None, axis=1, columns=None, level=None, inplace=False, errors='raise') Parameters: labels: It takes a list of column labels to drop. axis: It specifies to drop columns or rows. set aaxisto1or ‘columns’ to drop columns. By default, it drops the rows from Data...
>>>df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 # 第一种方法下删除column一定要指定axis=1,否则会报错 >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) ...
The number of missing values in each column has been printed to the console for you. Examine the DataFrame's .shape to find out the number of rows and columns. Drop both the county_name and state columns by passing the column names to the .drop() method as a list of strings. Examine...
Thedrop()method in Pandas DataFrame is used to remove rows or columns from the DataFrame based on specified index labels or positions. By default, it removes rows, but you can specify theaxisparameter to remove columns instead. Can I drop multiple rows at once using drop()?