In [1]: dates = pd.date_range('1/1/2000', periods=8) In [2]: df = pd.DataFrame(np.random.randn(8, 4), ...: index=dates, columns=['A', 'B', 'C', 'D']) ...: In [3]: df Out[3]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112...
结果为: 初始数据为: a b c d 0 2.0 kl 4.0 7.0 1 2.0 kl 6.0 9.0 2 NaN kl 5.0 NaN 3 5.0 NaN NaN 9.0 4 6.0 kl 6.0 8.0 columns= Index(['a', 'b', 'c', 'd'], dtype='object') index= RangeIndex(start=0, stop=5, step=1) values= [[2.0 'kl' 4.0 7.0] [2.0 'kl' 6....
index,columns=['category','size'])) 8、将完成分裂后的数据表和原df_inner数据表进行匹配 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df_inner=pd.merge(df_inner,split,right_index=True, left_index=True) 五、数据提取 主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置...
We can use this pandas function to remove the columns or rows from simple as well as multi-index DataFrame. DataFrame.drop(labels=None, axis=1, columns=None, level=None, inplace=False, errors='raise') Parameters: labels: It takes a list of column labels to drop. axis: It specifies to...
Pandas.DataFrame.drop() Syntax – Drop Rows & ColumnsLet’s know the syntax of the DataFrame drop() function.# Pandas DaraFrame drop() Syntax DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') ...
df.drop(['B', 'C'], axis=1, inplace=True) # inplace=True会就地修改 使用列数删除,传入参数是int,列表,者切片: 1 2 3 df.drop(df.columns[0], axis=1, inplace=True) # 删除第1列 df.drop(df.columns[0:3], axis=1, inplace=True) # 删除前3列 df.drop(df.columns[[0, 2]], ...
index =None,# 行索引默认columns=['Python','Math','En'])# 列索引# headr1 = df.head(3)# 显示头部3行,默认5个# tailr2 = df.tail(3)# 显示末尾3行,默认5个display(r1,r2) shape/dtypes - 数据形状/数据类型 importnumpyasnpimportpandasaspd# 创建 shape(150,3)的二维标签数组结构DataFramedf ...
grp_list = [df.groupby('名称')[['状态','编号']].nth(n).reset_index(drop=True) \ .rename(columns={'状态':'状态{}'.format(n+1),'编号':'编号{}'.format(n+1)}) \ forninrange(0,num)] pd.concat(grp_list,axis=1)二、列转行:字符拼接爆炸 ...
>>>s2=s1.reset_index(drop=True)。>>>s2.indexRangeIndex(start=0,stop=999999,step=1)>>>s2.index.memory_usage()128 如果你是Pandas的新手,你可能会想为什么Pandas不自己做呢?对于非数字标签来说,这有点显而易见:为什么(以及如何)Pandas在删除一行后,会重新标记所有后续的行?对于数字标签,答案就有点复...
标准整型数据类型不支持空值,所以会自动转换为浮点数。所以如果数据要求在整数字段中使用空值,请考虑使用Int64数据类型,因为它会使用pandas.NA来表示空值。 5、Csv, 压缩还是parquet? 尽可能选择parquet。parquet会保留数据类型,在读取数据时就不需要指定dtypes。parquet文件默认已经使用了snappy进行压缩,所以占用的磁盘空间...