Pandas利用Numba在DataFrame的列上进行并行化计算,这种性能优势仅适用于具有大量列的DataFrame。 In [1]: import numba In [2]: numba.set_num_threads(1) In [3]: df = pd.DataFrame(np.random.randn(10_000, 100)) In [4]: roll = df.rolling(100) #
df.memory_usage(deep=True) Index24A24B185C3D24dtype: int64 我们看到B列实际上占用了 185 个字节。 指定索引=False 要排除索引(行标签)的内存使用情况: df.memory_usage(index=False) A24B24C3D24dtype: int64 注:本文由纯净天空筛选整理自Isshin Inada大神的英文原创作品Pandas DataFrame | memory_usage met...
memory_usage() 方法返回包含每列内存使用情况的 Series。语法 dataframe.memory_usage(index, deep)参数 这些参数都是 关键字参数。参数值描述 index True|False 可选。默认为 True。指定是否包含索引(及其内存使用情况) deep True|False 可选。默认值为 False。指定是否深入计算内存使用情况。如果为 True,系统将...
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.memory_usage方法的使用。 原文地址:...
29. Delete Rows by Column ValueWrite a Pandas program to delete DataFrame row(s) based on given column value. Sample data: Original DataFrame col1 col2 col3 0 1 4 7 1 4 5 8 2 3 6 9 3 4 7 0 4 5 8 1 New DataFrame col1 col2 col3 0 1 4 7 2 3 6 9 3 4 7 0 4 ...
sync 操作系统在运行过程中,会把访问到的文件放到buffer中。为了避免断电,等故障造成数据丢失,我们需要把...
DataFrame.drop_duplicates() 方法用于删除DataFrame中的重复行。它可以基于所有列或特定列来检测重复值,并返回一个新的DataFrame或修改原始DataFrame。本文主要介绍一下Pandas中pandas.DataFrame.drop_duplicates方法的使用。
pandas.DataFrame.mul 函数是一个非常有用的方法,用于将 DataFrame 的元素与其他元素(另一个 DataFrame、Series 或一个常数)逐元素相乘。这个方法通常用于数据处理和分析中,以执行规模调整、单位转换或其他元素级的计算。本文主要介绍一下Pandas中pandas.DataFrame.mul方法的使用。
Python pandas.DataFrame.memory_usage函数方法的使用,Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
'pandas.core.frame.DataFrame'> RangeIndex: 6040 entries, 0 to 6039 Data columns (total 5 columns): UserID 6040 non-null int64 Gender 6040 non-null object Age 6040 non-null int64 Occupation 6040 non-null int64 Zip-code 6040 non-null object dtypes: int64(3), object(2) memory usage: ...