pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) 作用是返回固定频率的时间索引 参数: start:左边界用于生成日期 end:右边界用于生成日期 periods:周期数 freq:频率字符串可以有多个,例如“ 5H”。 tz:返回本地化的...
date_range(start='1/1/2018', end='1/08/2018') # freq 默认 D print(date1) # 返回 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq='D') 2. 指定end...
pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) source 常用参数为start、end、periods、freq。 start:指定生成时间序列的开始时间 end:指定生成时间序列的结束时间 periods:指定生成时间序列的数量 freq:生成频率,默认‘D’,...
所以使用pandas的date_range ( ) 函数生产日期时间数据时,如果以 6天为间隔可以设置参数freq为6D说法正确。 故本题选A。 本题是一道判断题,考察学生对pandas相关知识是否清晰。 题干中问到,使用pandas的date_range ( ) 函数生产日期时间数据时,如果以 6天为间隔可以设置参数freq为6D说法是否正确。 要做出这道...
函数定义 pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) Return a fixed(固定的)
pd.date_range()默认频率为日历日 pd.bdate_range()默认频率为工作日 tz:时区 1.1 部分参数的讲解 rng1=pd.date_range('1/1/2017','1/10/2017',normalize=True) rng2=pd.date_range(start='1/1/2017',periods=10) ...
help(pd.date_range) Help on function date_range in module pandas.core.indexes.datetimes: date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs) -> pandas.core.indexes.datetimes.DatetimeIndex Return a fixed frequency DatetimeInd...
date_range()方法主要用于生成一系列特定的时间,我们可以自己设定开始、结束、周期数、时间间隔、时区等等。 语法 import pandas pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs) 参数说明 start、end 开始时间、结束时间,可...
pandas的date_range函数pandas的date_range函数 pandas中的date_range()函数可以用来生成一系列日期,是非常常用的时间序列创建函数之一。它主要可以设置的参数有三个:起始日期(start date)、终止日期(end date)和日期频率(freq),其中日期频率是必选的参数,可以用来控制生成的时间序列的间隔。freq的可选参数包括:'D'(...
# 批量生成时刻数据# periods=4:创建4个时间# freq="D":按填周期index = pd.date_range("2024.02.08",periods=4,freq="D")index DatetimeIndex(['2024-02-08', '2024-02-09', '2024-02-10', '2024-02-11'], dtype='datetime64[ns]', freq='D')# 批量生成时期数据index = pd.period_...