1. 创建DataFrame DataFrame函数用于创建DataFrame对象,其基本语法格式如下。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) DataFrame函数常用的参数及其说明如下所示。 data:接收ndarray,dict,list或DataFrame。表示输入数...
您可以使用DataFrame来加载、处理和分析结构化的数据,进行数据探索和预处理,以及进行统计分析和建模等任务。 一、DataFrame 的常用操作 # 通过 DataFrame 构造数据框d = [[1.0,2.2,3,4],[1,2,3,4],[7,8,9,0],[3,5,7,9]]print(d) df = pd.DataFrame(d)print(df)# index 修改行名称,columns 修改...
df.loc[df['A'] > 3]这段代码会返回一个新的DataFrame,其中只包含满足条件(即列A中的值大于3)的行。如果你只想获取这些行的索引,可以使用.index属性:df.loc[df['A'] > 3].index如果你想要获取这些元素的原始位置索引(即它们在原始DataFrame中的位置),可以使用np.where函数:import numpy as np np.where...
在pandas中创建数据框架有很多方法,这里将介绍一些最常用和最直观的方法。所有这些方法实际上都是从相同的语法pd.DataFrame()开始的。下面是该方法的几个重要参数: data:确切地说,这是你想要放到数据框架中的数据。 index:命名索引。 columns:命名列。
Part 2. Series and Index Part 3. DataFrames Part 4. MultiIndex 我们将拆分成四个部分,依次呈现~建议关注和星标@公众号:数据STUDIO,精彩内容等你来~ Part 2. Series 和 Index Series剖析 Series是NumPy中一维数组的对应物,是DataFrame代表其列的基本构件。尽管与DataFrame相比,它的实际重要性正在减弱(你完全...
1. DataFrameDataFrame是Pandas中最重要的数据结构之一,可以看作是一种二维表格数据结构,类似于Excel中的电子表格。如下图所示,一个表格在excel和pandas中的展示方式保持一致:DataFrame由行和列组成,每一列可以包含不同的数据类型(如整数、浮点数、字符串等),并且可以对数据进行灵活的操作和分析。它的具体结构在...
Index类型,它为Series和DataFrame对象提供了索引服务,有了索引我们就可以排序数据(sort_index方法)、对齐数据(在运算和合并数据时非常重要)并实现对数据的快速检索(索引运算)。 由于DataFrame类型表示的是二维数据,所以它的行和列都有索引,分别是index和columns。Index类型的创建的比较简单,通常给出data、dtype和name三...
在这6个类中,Series、DataFrame和Index是使用频率最高的类。 01 Series Series由一组数据以及一组与之对应的数据标签(即索引)组成。Series对象可以视作一个NumPy的ndarray,因此许多NumPy库函数可以作用于Series。 1. 创建Series 创建Series对象的函数是Series,它的主要参数是data和index,其基本语法格式如下。
df = pd.DataFrame({'Name': pd.Series(['Tom', 'Jack', 'Steve', 'Ricky', 'Bob'], index=['A', 'B', 'C', 'D', 'E']), 'Age': pd.Series([28, 34, 29, 42], index=['A', 'B', 'C', 'D'])}) df['Math'] = pd.Series([90, 58, 99, 100, 48], index=['A',...