Python Pandas DataFrame reindex 1. 什么是reindex及其用途 reindex 是Pandas 中用于重新索引 DataFrame 或 Series 的方法。它允许你根据新的索引顺序重新排列数据,对于在新索引中不存在于原始数据中的值,Pandas 会默认填充 NaN(不是数字)值。reindex 的主要用途包括数据对齐、缺失值处理等。
简单介绍一下标题上的几个函数,set_index()可以把用字符串、字符串列表或数组设置为dataframe的新索引,但必须与原dataframe的长度一致;reset_index()重置dataframe的索引,重置后的索引默认是整数索引;reindex()按照给定的新索引对行/列数据进行重新排列。 创建基础数据 importnumpyasnp importpandasaspd # 创建一个时间...
Pandas DataFrame reindex 重置行索引 import pandas as pd import numpy as np my_df = pd.DataFrame(data=np.arange(20).reshape(4,5), # 4*5的矩阵 index=list("acef"), # 行索引 缺少bd,一会用reindex补上 columns=list("ABCDE")) # 列索引 print("my_df\n",my_df) ''' reindex( labels=N...
df.reindex(new_index, fill_value=0) http_status response_time Safari404 0.07Iceweasel 00.00Comodo Dragon 00.00IE10404 0.08Chrome200 0.02 二,设置索引(set_index) 把现有的列设置为行索引,使用set_index()函数把已有的列转换为行索引,也可以使用set_axis()函数替换掉已有的轴索引。使用现有的列作为DataFra...
Python Pandas dataframe.reindex_like() Python是一种进行数据分析的伟大语言,主要是因为以数据为中心的Python包的奇妙生态系统。Pandas就是这些包中的一个,它使导入和分析数据变得更加容易。 Pandas dataframe.reindex_like()函数返回一个与自己索引匹配的对象。任何
示例代码 1:基本的 Reindex importpandasaspd data={'name':['Alice','Bob','Charles','David','Edward'],'age':[25,27,22,32,29],'job':['Engineer','Doctor','Artist','Lawyer','Chef']}df=pd.DataFrame(data)new_index=[0,1,2,3,4,5,6]new_df=df.reindex(new_index)print(new_df) ...
1. Reindex Reindex是用于根据给定的索引重新构建DataFrame的索引的方法。它根据新的索引对原始数据进行填充或重新排序。在调用Reindex时,可以指定新的索引,或者提供一个用于排序的序列。如果提供了新的索引,则原始索引将被替换为新的索引;如果未提供新的索引,则将根据提供的序列对原始数据进行排序。以下是使用Reindex方法...
reindex()是pandas中实现数据对齐的基本方法,对齐是指沿着指定轴,让数据与给定的一组标签(行列索引)进行匹配。 DataFrame.reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=None, level=None, fill_value=nan, limit=None, tolerance=None): ...
可以从数组列表(使用MultiIndex.from_arrays())、元组数组(使用MultiIndex.from_tuples())、可迭代的交叉集(使用MultiIndex.from_product())或DataFrame(使用MultiIndex.from_frame())创建MultiIndex。当传递元组列表给Index构造函数时,它将尝试返回MultiIndex。以下示例演示了初始化 MultiIndexes 的不同方法。
利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对Series 的重新索引操作 重新索引指的是根据index参数重新进行排序。如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。