pandas.DataFrame(data=None,index=None,columns=None,dtype=None,copy=False) 参数说明: data:DataFrame 的数据部分,可以是字典、二维数组、Series、DataFrame 或其他可转换为 DataFrame 的对象。如果不提供此参数,则创建一个空的 DataFrame。 index:DataFrame 的行索引,用于标识每行数据。可以是列表、数组、索引对象等...
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size'])) 8、将完成分裂后的数据表和原df_inner数据表进行匹配 代码语言:javascript 代码运行次数:0 运行 AI代码解释 df_inner=pd.merge(df_inner,split,right_index=True, left_index=True) ...
df.index = ["12","3","9"] df.columns = ["姓名","语文","数学","英语"] df 其中index用来设置行标签,columns用来设置列标签。 1.3 索引的应用 索引最大的作用是访问和选择数据,之前学习的loc函数就是通过索引来访问和选择行列数据的。 df = pd.DataFrame( [ ["小红",99,100,95], ["小明",95...
在pandas中,对DataFrame的数据进行查询通常涉及几个关键步骤,包括确定查询的目标数据列、使用loc或iloc函数、应用条件筛选、以及可选地对查询结果进行排序或分组。以下是详细的步骤和示例代码: 1. 确定查询的目标数据列 首先,你需要明确你想要查询的列。例如,假设我们有一个包含员工信息的DataFrame,我们想要查询特定列的...
这里提到了index和columns分别代表行标签和列标签,就不得不提到pandas中的另一个数据结构:Index,例如series中标签列、dataframe中行标签和列标签均属于这种数据结构。既然是数据结构,就必然有数据类型dtype属性,例如数值型、字符串型或时间类型等,其类型绝大多数场合并不是我们关注的主体,但有些时候值得注意,如后文中...
数据创建与基本信息1. __init__方法用处:初始化DataFrame对象。语法规范: pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) data:数据,可以是数组、系列、字典或另一个DataFra…
df.query('Embarked == "S"') 与SQL 比较,则 query() 方法中的表达式类似于 SQL 中的 WHERE 语句。 结果是一个 DataFrame,其中包含所有从南安普敦出发的乘客: query() 方法接受字符串作为查询条件串,因此,如果要查询字符串列,则需要确保字符串被正确括起来: ...
from_records(data[, index, exclude, ...]) 将结构化或记录ndarray转换为DataFrame。 ge(other[, axis, level]) 获取DataFrame和other的大于等于,逐元素执行(二进制运算符ge)。 get(key[, default]) 获取给定键的对象项(例如DataFrame列)。 groupby([by, axis, level, as_index, sort, ...]) 使用映射...
4.DataFrame的结构 .index/columns属性都为普通属性,它们返回的都是一个Index对象,参考Series。 .dtypes属性为property属性,给出了每列的数值类型。它返回的是一个Series。并且没有.dtype属性,这一点与Series不同。 .ftypes属性为property属性,给出了每列是否为sparse/dense的。它返回的是一个Series。并且没有.f...
Pandas有三种数据结构Series、DataFrame和Panel。 Series类似于数组,DataFrame类似于表格,而Panel则可以视为Excel的多表单Sheet。 1:Series Series 是一种一维数组对象,包含了一个值序列,并且包含了数据标签,称为索引(index),通过索引来访问数组中的数据。 Series的创建 1)通过列表创建 2)通过字典创建 通过列表创建 imp...